Generation of Various Telencephalic Regions from Human Embryonic Stem Cells in Three-Dimensional Culture

  • Taisuke Kadoshima
  • Hideya Sakaguchi
  • Mototsugu Eiraku
Part of the Methods in Molecular Biology book series (MIMB, volume 1597)


In the developing embryo, telencephalon arises from the rostral portion of the neural tube. The telencephalon further subdivides into distinct brain regions along the dorsal-ventral (DV) axis by exogenous patterning signals. Here, we describe a protocol for in vitro generation of various telencephalic regions from human embryonic stem cells (ESCs). Dissociated human ESCs are reaggregated in a low-cell-adhesion 96-well plate and cultured as floating aggregates. Telencephalic neural progenitors are efficiently generated when ESC aggregates are cultured in serum-free medium containing TGFβ inhibitor and Wnt inhibitor. In long-term culture, the telencephalic neural progenitors acquire cortical identities and self-organize a stratified cortical structure as seen in human fetal cortex. By treatment with Shh signal, the telencephalic progenitors acquire ventral (subpallial) identities and generate lateral ganglionic eminence (LGE) and medial ganglionic eminence (MGE). In contrast, by treatment with Wnt and BMP signals, their regional identities shift to more dorsal side that generates choroid plexus and medial palllium (hippocampal primordium).

Key words

SFEBq culture Human ESCs Telencephalon Cerebral cortex Ganglionic eminence Medial pallium Hippocampus 


  1. 1.
    Wilson SW, Houart C (2004) Early steps in the development of the forebrain. Dev Cell 6(2):167–181CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7(9):687–696CrossRefPubMedGoogle Scholar
  3. 3.
    Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32(4):591–604CrossRefPubMedGoogle Scholar
  4. 4.
    Lehtinen MK, Bjornsson CS, Dymecki SM et al (2013) The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci 33(45):17553–17559. doi: 10.1523/JNEUROSCI.3258-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9(2):110–122. doi: 10.1038/nrn2252 CrossRefPubMedGoogle Scholar
  6. 6.
    Tole S, Christian C, Grove EA (1997) Early specification and autonomous development of cortical fields in the mouse hippocampus. Development 124(24):4959–4970PubMedGoogle Scholar
  7. 7.
    Sousa VH, Fishell G (2010) Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Curr Opin Genet Dev 20(4):391–399. doi: 10.1016/j.gde.2010.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sigurdsson T, Duvarci S (2015) Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Front Syst Neurosci 9:190. doi: 10.3389/fnsys.2015.00190 PubMedGoogle Scholar
  9. 9.
    Eiraku M, Sasai Y (2012) Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol 22(5):768–777. doi: 10.1016/j.conb.2012.02.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530. doi: 10.1016/j.stem.2013.04.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493(7432):318–326. doi: 10.1038/nature11859 CrossRefPubMedGoogle Scholar
  12. 12.
    Eiraku M, Watanabe K, Matsuo-Takasaki M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3(5):519–532. doi: 10.1016/j.stem.2008.09.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Watanabe M, Kang YJ, Davies LM et al (2012) BMP4 sufficiency to induce choroid plexus epithelial fate from embryonic stem cell-derived neuroepithelial progenitors. J Neurosci 32(45):15934–15945. doi: 10.1523/JNEUROSCI.3227-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kadoshima T, Sakaguchi H, Nakano T et al (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A 110:20284–20289. doi: 10.1073/pnas.1315710110 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. doi: 10.1038/nature12517 CrossRefPubMedGoogle Scholar
  16. 16.
    Sakaguchi H, Kadoshima T, Soen M et al (2015) Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 6:8896. doi: 10.1038/ncomms9896 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Watanabe K, Kamiya D, Nishiyama A et al (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288–296CrossRefPubMedGoogle Scholar
  18. 18.
    Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686CrossRefPubMedGoogle Scholar
  19. 19.
    Wataya T, Ando S, Muguruma K et al (2008) Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci U S A 105(33):11796–11801. doi: 10.1073/pnas.0803078105 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Danjo T, Eiraku M, Muguruma K et al (2011) Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci 31(5):1919–1933. doi: 10.1523/JNEUROSCI.5128-10.2011 CrossRefPubMedGoogle Scholar
  21. 21.
    Nasu M, Takata N, Danjo T et al (2012) Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminincontaining matrix in mouse ES cell culture. PLoS One 7:e53024. doi: 10.1371/journal.pone.0053024 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Levine AJ, Brivanlou AH (2007) Proposal of a model of mammalian neural induction. Dev Biol 308(2):247–256CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fuccillo M, Rallu M, McMahon AP et al (2004) Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131(20):5031–5040CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Taisuke Kadoshima
    • 1
    • 2
  • Hideya Sakaguchi
    • 3
    • 4
  • Mototsugu Eiraku
    • 3
  1. 1.Cell Asymmetry teamRIKEN Center for Developmental BiologyKobeJapan
  2. 2.Asubio Pharma Co., Ltd.KobeJapan
  3. 3.In Vitro Histogenesis teamRIKEN Center for Developmental BiologyKobeJapan
  4. 4.Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan

Personalised recommendations