Skip to main content

Ambient Lipidomic Analysis of Brain Tissue Using Desorption Electrospray Ionization (DESI) Mass Spectrometry

  • Protocol
  • First Online:
Book cover Lipidomics

Part of the book series: Neuromethods ((NM,volume 125))

Abstract

Desorption electrospray ionization (DESI) is a spray-based ambient ionization method for mass spectrometry (MS) which generates ions in native atmospheric conditions (e.g., pressure and temperature). Ambient ionization allows in situ analysis of unmodified biological samples by eliminating analyte extraction and separation steps before MS analysis. DESI-MS has been extensively used to analyze organ tissues both in humans and in vertebrate animals, focusing on the detection of small molecules (e.g., oncometabolites, xenobiotic drugs, hormones, etc.) and lipids.

DESI-MS lipidomic analysis workflow involves (1) detection of lipids from intact biological material, (2) detection and identification of lipids in complex mixtures, and (3) discrimination between similar lipids, e.g., isomeric lipids. DESI-MS can provide lipid profiles using a relatively fast and simple workflow in which low-resolution single-stage mass spectra are recorded during 2D or 3D image analysis (i.e., mapping the distribution of lipids within the sample). Such DESI-MS lipid profiles include many classes of lipids, such as phosphatidylcholines (PC), triacylglycerols (TGs), free fatty acids (FFAs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylserines (PSs), diacylglycerols (DGs), ubiquinone, and cholesterol derivatives (e.g., cholesterol sulfate and cholesterol esters). Depending on the mass spectrometer used, there is the additional possibility of obtaining structural information of lipids via MSn, and molecular formulae via high resolution mass spectrometry (HRMS). Focusing on the analysis of human brain, here we summarize the DESI-MS experimental workflow for tissue analysis, data collection, and processing using low and high-resolution mass spectrometers, emphasizing the strategies for structural identification of lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Detection technologies. Ambient mass spectrometry. Science 311:1566–1570. doi:10.1126/science.1119426

    Article  CAS  PubMed  Google Scholar 

  2. Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG (2013) Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem 64:481–505. doi:10.1146/annurev-physchem-040412-110026

    Article  CAS  PubMed  Google Scholar 

  3. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473. doi:10.1126/science.1104404

    Article  CAS  PubMed  Google Scholar 

  4. Cooks RG, Jarmusch AK, Ferreira CR, Pirro V (2015) Skin molecule maps using mass spectrometry. Proc Natl Acad Sci U S A 112:5261–5262. doi:10.1073/pnas.1505313112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Monge ME, Harris GA, Dwivedi P, Fernandez FM (2013) Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev 113:2269–2308. doi:10.1021/cr300309q

    Article  CAS  PubMed  Google Scholar 

  6. Eberlin LS (2014) DESI-MS imaging of lipids and metabolites from biological samples. Methods Mol Biol 1198:299–311. doi:10.1007/978-1-4939-1258-2_20

    Article  CAS  PubMed  Google Scholar 

  7. Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, Liu X, Wiley JS, Vestal ML, Ramkissoon SH, Orringer DA, Gill KK, Dunn IF, Dias-Santagata D, Ligon KL, Jolesz FA, Golby AJ, Cooks RG, Agar NY (2014) Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci U S A 111:11121–11126. doi:10.1073/pnas.1404724111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siebenhaar M, Kullmer K, de Barros Fernandes NM, Hullen V, Hopf C (2015) Personalized monitoring of therapeutic salicylic acid in dried blood spots using a three-layer setup and desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 407:7229–7238. doi:10.1007/s00216-015-8887-8

    Article  CAS  PubMed  Google Scholar 

  9. Talaty N, Mulligan CC, Justes DR, Jackson AU, Noll RJ, Cooks RG (2008) Fabric analysis by ambient mass spectrometry for explosives and drugs. Analyst 133:1532–1540. doi:10.1039/b807934j

    Article  CAS  PubMed  Google Scholar 

  10. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cooks RG (2011) Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim Biophys Acta 1811(11)946–960. doi:10.1016/j.bbalip.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG (2011) Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. Chembiochem 12:2129–2132. doi:10.1002/cbic.201100411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferreira CR, Jarmusch AK, Pirro V, Alfaro CM, Gonzalez-Serrano AF, Niemann H, Wheeler MB, Rabel RA, Hallett JE, Houser R, Kaufman A, Cooks RG (2015) Ambient ionisation mass spectrometry for lipid profiling and structural analysis of mammalian oocytes, preimplantation embryos and stem cells. Reprod Fertil Dev 27:621–637. doi:10.1071/RD14310

    Article  CAS  PubMed  Google Scholar 

  13. Ferreira CR, Pirro V, Jarmusch AK, Alfaro CM, Cooks RG (2016) Ambient lipidomic analysis of single mammalian oocytes and pre-implantation embryos using desorption electrospray ionization (DESI) mass spectrometry. Methods Mol Biol. Accepted for publication

    Google Scholar 

  14. Ferreira CR, Eberlin LS, Hallett JE, Cooks RG (2012) Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J Mass Spectrom 47:29–33. doi:10.1002/jms.2022

    Article  CAS  PubMed  Google Scholar 

  15. Eberlin LS, Liu X, Ferreira CR, Santagata S, Agar NY, Cooks RG (2011) Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Anal Chem 83:8366–8371. doi:10.1021/ac202016x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pirro V, Guffey SC, Sepúlveda MS, Mahapatra CT, Ferreira CR, Jarmusch AK, Cooks RG (2016) Lipid dynamics in zebrafish embryonic development observed by DESI-MS imaging and nanoelectrospray-MS. Mol Biosyst 12:2069–2079. doi:10.1039/C6MB00168H

  17. Kerian KS, Jarmusch AK, Pirro V, Koch MO, Masterson TA, Cheng L, Cooks RG (2015) Differentiation of prostate cancer from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass spectrometry. Analyst 140:1090–1098. doi:10.1039/c4an02039a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dill AL, Eberlin LS, Costa AB, Zheng C, Ifa DR, Cheng L, Masterson TA, Koch MO, Vitek O, Cooks RG (2011) Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chemistry 17:2897–2902. doi:10.1002/chem.201001692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dill AL, Eberlin LS, Zheng C, Costa AB, Ifa DR, Cheng L, Masterson TA, Koch MO, Vitek O, Cooks RG (2010) Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal Bioanal Chem 398:2969–2978. doi:10.1007/s00216-010-4259-6

    Article  CAS  PubMed  Google Scholar 

  20. Eberlin LS, Tibshirani RJ, Zhang J, Longacre TA, Berry GJ, Bingham DB, Norton JA, Zare RN, Poultsides GA (2014) Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proc Natl Acad Sci U S A 111:2436–2441. doi:10.1073/pnas.1400274111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jarmusch AK, Kerian KS, Pirro V, Peat T, Thompson CA, Ramos-Vara JA, Childress MO, Cooks RG (2015) Characteristic lipid profiles of canine non-Hodgkin’s lymphoma from surgical biopsy tissue sections and fine needle aspirate smears by desorption electrospray ionization—mass spectrometry. Analyst 140:6321–6329. doi:10.1039/c5an00825e

    Article  CAS  PubMed  Google Scholar 

  22. Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG (2016) Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc Natl Acad Sci U S A 113:1486–1491. doi:10.1073/pnas.1523306113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NY (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72:645–654. doi:10.1158/0008-5472.CAN-11-2465

    Article  CAS  PubMed  Google Scholar 

  24. Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X, Ide JL, Jarmusch AK, Ligon KL, Jolesz FA, Golby AJ, Santagata S, Agar NY, Cooks RG (2013) Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci U S A 110:1611–1616. doi:10.1073/pnas.1215687110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Righi V, Roda JM, Paz J, Mucci A, Tugnoli V, Rodriguez-Tarduchy G, Barrios L, Schenetti L, Cerdan S, Garcia-Martin ML (2009) 1H HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas. NMR Biomed 22:629–637. doi:10.1002/nbm.1377

    Article  CAS  PubMed  Google Scholar 

  26. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044. doi:10.1126/science.1218595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogenesis 5:e189. doi:10.1038/oncsis.2015.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez-Serrano AF, Pirro V, Ferreira CR, Oliveri P, Eberlin LS, Heinzmann J, Lucas-Hahn A, Niemann H, Cooks RG (2013) Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS One 8:e74981. doi:10.1371/journal.pone.0074981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pirro V, Oliveri P, Ferreira CR, Gonzalez-Serrano AF, Machaty Z, Cooks RG (2014) Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Anal Chim Acta 848:51–60. doi:10.1016/j.aca.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  30. Robichaud G, Garrard KP, Barry JA, Muddiman DC (2013) MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom 24:718–721. doi:10.1007/s13361-013-0607-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pirro V, Eberlin LS, Oliveri P, Cooks RG (2012) Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst 137:2374–2380. doi:10.1039/c2an35122f

  32. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861. doi:10.1194/jlr.E400004-JLR200

  33. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–14. doi:10.1194/jlr.R800095-JLR200

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJ (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54:1523–1530. doi:10.1194/jlr.M033506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murphy RC (2015) Tandem mass spectrometry of lipids: molecular analysis of complex lipids. Royal Society of Chemistry, Cambridge, p 280

    Google Scholar 

  36. Ma X, Chong L, Tian R, Shi R, Hu TY, Ouyang Z, Xia Y (2016) Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc Natl Acad Sci U S A 113:2573–2578. doi:10.1073/pnas.1523356113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem 3:433–465. doi:10.1146/annurev.anchem.111808.073705

    Article  CAS  Google Scholar 

  38. Kozlowski RL, Mitchell TW, Blanksby SJ (2015) A rapid ambient ionization-mass spectrometry approach to monitoring the relative abundance of isomeric glycerophospholipids. Sci Rep 5:9243. doi:10.1038/srep09243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pham HT, Maccarone AT, Thomas MC, Campbell JL, Mitchell TW, Blanksby SJ (2014) Structural characterization of glycerophospholipids by combinations of ozone- and collision-induced dissociation mass spectrometry: the next step towards "top-down" lipidomics. Analyst 139:204–214. doi:10.1039/c3an01712e

    Article  CAS  PubMed  Google Scholar 

  40. Manicke NE, Dill AL, Ifa DR, Cooks RG (2010) High resolution tissue imaging on an orbitrap mass spectrometer by desorption electro-spray ionization mass spectrometry (DESI-MS) J Mass Spectrom 45:223–226. doi:10.1002/jms.1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94:2339–2344

    Google Scholar 

  42. Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146:741–754

    Google Scholar 

  43. Roscioli KM, Tufariello JA, Zhang X, Li SX, Goetz GH, Cheng G, Siems WF, Hill HH Jr (2014) Desorption electrospray ionization (DESI) with atmospheric pressure ion mobility spectrometry for drug detection. Analyst 139:1740–1750. doi:10.1039/c3an02113k

    Article  CAS  PubMed  Google Scholar 

  44. Myung S, Wiseman JM, Valentine SJ, Takats Z, Cooks RG, Clemmer DE (2006) Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured States. J Phys Chem B 110:5045–5051. doi:10.1021/jp052663e

    Article  CAS  PubMed  Google Scholar 

  45. Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RM (2016) Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods S1046-2023:30031–30037. doi:10.1016/j.ymeth.2016.02.01446.

  46. Jarmusch AK, Alfaro CM, Pirro V, Hattab EM, Cohen-Gadol AA, Cooks RG (2016) Differ-ential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization - Mass Spectrometry Imaging. PLoS One 11: e0163180. doi:10.1371/journal.pone.0163180.

Download references

Acknowledgments

CRF was supported from the Purdue University Center for Cancer Research Small Grants and from the Brazilian National Council for Scientific and Technological Development (CNPq). VP gladly acknowledges the American Society for Mass Spectrometry for providing financial support (ASMS Postdoctoral Award 2015). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Pirro .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pirro, V., Jarmusch, A.K., Ferreira, C.R., Cooks, R.G. (2017). Ambient Lipidomic Analysis of Brain Tissue Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. In: Wood, P. (eds) Lipidomics. Neuromethods, vol 125. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6946-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6946-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6944-9

  • Online ISBN: 978-1-4939-6946-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics