Skip to main content

Microscopic Analysis of Lysosomal Membrane Permeabilization

  • Protocol
  • First Online:
Lysosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1594))

Abstract

Lysosomes and lysosomal proteases have been found to participate during several forms of cell death pathways including apoptosis. A critical step in the mediation of apoptotic signaling is the release of cathepsins to the cytosol, a process known as lysosomal membrane permeabilization (LMP). In this chapter, we describe immunofluorescence detection of LMP in cell cultures stained for cathepsin B and LAMP-2 using three confocal techniques namely laser scanning, spinning disk, and aperture correlation spinning disk confocal to obtain images. Image analysis is performed using Huygens software for deconvolution. LMP results in a decrease in the fraction of cathepsin B colocalizing with LAMP-2, which is quantified through Manders’ colocalization coefficient. Analysis of the images obtained by the three techniques show the same trend but the magnitude of the decrease differs due to the axial resolution. The observations emphasize the use of highest possible resolution when determining colocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Duve C (1959) Lysosomes, a new group of cytoplasmic particles. In: Hayashi T (ed) Subcellular Particles. The Ronald Press Co, New York, pp 128–159

    Google Scholar 

  2. Turk B, Turk V (2009) Lysosomes as ‘suicide bags’ in cell death: myth or reality? J Biol Chem 284:21783–21787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberg K, Öllinger K (1998) Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol 152(5):1151–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451. doi:10.1038/onc.2008.310

    Article  CAS  PubMed  Google Scholar 

  5. Bivik CA, Larsson PK, Kågedal KM, Rosdahl IK, Öllinger KM (2006) UVA/B-induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members. J Invest Dermatol 126(5):1119–1127

    Article  CAS  PubMed  Google Scholar 

  6. Roberg K, Kågedal K, Öllinger K (2002) Microinjection of cathepsin d induces caspase-dependent apoptosis in fibroblasts. Am J Pathol 161(1):89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schestkowa O, Geisel D, Jacob R, Hasilik A (2007) The catalytically inactive precursor of cathepsin D induces apoptosis in human fibroblasts and HeLa cells. J Cell Biochem 101(6):1558–1566

    Article  CAS  PubMed  Google Scholar 

  8. Scheffler JM, Schiefermeier N, Hube LA (2014) Mild fixation and permeabilization protocol for preserving structures of endosomes, focal adhesions, and actin filaments during immunofluorescence analysis. Methods Enzymol 535:93–102

    Article  CAS  PubMed  Google Scholar 

  9. Stadler C, Skogs M, Brismar H, Uhlén M, Lundberg E (2010) A single fixation protocol for proteome-wide immunofluorescence localization studies. J Proteomics 73(6):1067–1078

    Article  CAS  PubMed  Google Scholar 

  10. Donaldson J (2001) Immunofluorescence staining. Curr Protoc Cell Biol 4. doi:10.1002/0471143030.cb0403s00

  11. Jamur MC, Oliver C (2010) Permeabilization of cell membranes. Methods Mol Biol 588:63–66

    Article  PubMed  Google Scholar 

  12. Bauer CR (2014) Labeling and use of monoclonal antibodies in immunofluorescence: protocols for cytoskeletal and nuclear antigens. Methods Mol Biol 1131:543–548

    Article  CAS  PubMed  Google Scholar 

  13. Yamanaka M, Smith NI, Fujita K (2014) Introduction to super-resolution microscopy. Microscopy 63:177–192

    Article  PubMed  Google Scholar 

  14. Cox S, Jones GE (2013) Imaging cells at hte nanoscale. Int J Biochem Cell Biol 45:1669–1678

    Article  CAS  PubMed  Google Scholar 

  15. Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2:920–231

    Article  CAS  PubMed  Google Scholar 

  16. Sanderson MJ, Smith I, Parker I, Bootman MD (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014(10):pdb.top071795. doi:10.1101/pdb.top071795

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oreopoulos J, Berman R, Browne M (2014) Spinning-disk confocal microscopy: present technology and future trends. Methods Cell Biol 123:153–175

    Article  PubMed  Google Scholar 

  18. Karlsson T, Lagerholm BC, Vikström E, Loitto VM, Magnusson KE (2013) Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing. Biochem Biophys Res Commun 430(3):993–998

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson T, Bolshakova A, Magalhães MA, Loitto VM, Magnusson KE (2013) Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions. PLoS One 8(4):e59901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang YL (2007) Computational restoration of fluorescence images: noise reduction, deconvolution, and pattern recognition. Methods Cell Biol 81:435–445

    Article  PubMed  Google Scholar 

  21. Dunn WD, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300:C723–C742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jež M, Bas T, Veber M, Košir A, Dominko T, Page R, Rožman P (2013) The hazards of DAPI photoconversion: effects of dye, mounting media and fixative, and how to minimize the problem. Histochem Cell Biol 139:195–204

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Swedish Research Council, Swedish Cancer Society, County Council of Östergötland, Konung Gustav V och Drottning Victorias Frimurarestiftelse and Stiftelsen Olle Engkvist Byggmästare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesa Loitto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Giraldo, A.M.V., Öllinger, K., Loitto, V. (2017). Microscopic Analysis of Lysosomal Membrane Permeabilization. In: Öllinger, K., Appelqvist, H. (eds) Lysosomes. Methods in Molecular Biology, vol 1594. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6934-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6934-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6932-6

  • Online ISBN: 978-1-4939-6934-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics