Skip to main content

Quantitative Profiling of Lysosomal Lipidome by Shotgun Lipidomics

  • Protocol
  • First Online:
Lysosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1594))

Abstract

Recent studies have illuminated novel roles of lysosomes that go far beyond simple catabolism and function in the coordination of cellular metabolism and signaling. Promising therapeutic strategies emerge from knowledge in the molecular mechanisms and physiological roles of lipid metabolism in lysosomes. Global monitoring of the function and dysregulation of lysosomal lipid metabolism requires a methodology that resolves the complexity of lysosomal lipidome by quantitatively detecting hundreds of lipid species of diverse physicochemical properties. We describe here a detailed protocol that couples isolation of superparamagnetic iron dextran-loaded lysosomes from cultured mammalian cell lines with quantitative mass spectrometry-based shotgun lipidomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. doi:10.1038/Nrm2330

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14. doi:10.1194/jlr.R800095-JLR200

    PubMed  PubMed Central  Google Scholar 

  3. van Meer G (2005) Cellular lipidomics. EMBO J 24(18):3159–3165. doi:10.1038/sj.emboj.7600798

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schulze H, Sandhoff K (2011) Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol 3(6):a004804. doi:10.1101/cshperspect.a004804

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anderson RA, Sando GN (1991) Cloning and expression of cDNA encoding human lysosomal acid lipase/cholesteryl ester hydrolase. Similarities to gastric and lingual lipases. J Biol Chem 266(33):22479–22484

    CAS  PubMed  Google Scholar 

  6. Chiapparino A, Maeda K, Turei D, Saez-Rodriguez J, Gavin AC (2016) The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Prog Lipid Res 61:30–39. doi:10.1016/j.plipres.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477. doi:10.1126/science.1174447

    CAS  PubMed  Google Scholar 

  9. Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S et al (2013) Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24(3):379–393. doi:10.1016/j.ccr.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  10. Diettrich O, Mills K, Johnson AW, Hasilik A, Winchester BG (1998) Application of magnetic chromatography to the isolation of lysosomes from fibroblasts of patients with lysosomal storage disorders. FEBS Lett 441(3):369–372

    Article  CAS  PubMed  Google Scholar 

  11. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. doi:10.1194/jlr.R300004-JLR200

    Article  CAS  PubMed  Google Scholar 

  12. Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78(17):6202–6214. doi:10.1021/ac060545x

    Article  CAS  PubMed  Google Scholar 

  13. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178. doi:10.1002/mas.20342

    Article  CAS  PubMed  Google Scholar 

  14. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141. doi:10.1073/pnas.0811700106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H, Simons K, Shevchenko A (2011) Membrane lipidome of an epithelial cell line. Proc Natl Acad Sci U S A 108(5):1903–1907. doi:10.1073/pnas.1019267108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR (2009) Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One 4(7):e6261. doi:10.1371/journal.pone.0006261

    Article  PubMed  PubMed Central  Google Scholar 

  17. Surma MA, Herzog R, Vasilj A, Klose C, Christinat N, Morin-Rivron D et al (2015) An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur J Lipid Sci Technol 117(10):1540–1549. doi:10.1002/ejlt.201500145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94(6):2339–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M et al (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200(4):425–435. doi:10.1084/jem.20040531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bilgin M, Markgraf DF, Duchoslav E, Knudsen J, Jensen ON, de Kroon AI, Ejsing CS (2011) Quantitative profiling of PE, MMPE, DMPE, and PC lipid species by multiple precursor ion scanning: a tool for monitoring PE metabolism. Biochim Biophys Acta 1811(12):1081–1089. doi:10.1016/j.bbalip.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  21. Ejsing CS, Bilgin M, Fabregat A (2015) Quantitative profiling of long-chain bases by mass tagging and parallel reaction monitoring. PLoS One 10(12):e0144817. doi:10.1371/journal.pone.0144817

    Article  PubMed  PubMed Central  Google Scholar 

  22. Narayanaswamy P, Shinde S, Sulc R, Kraut R, Staples G, Thiam CH, Grimm R, Sellergren B, Torta F, Wenk MR (2014) Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem 86(6):3043–3047. doi:10.1021/ac4039652

    Article  CAS  PubMed  Google Scholar 

  23. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412. doi:10.1002/mas.20023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the European Research Council Advance grant (M.J.) (#340751, LYSOSOME), the Danish National Research Foundation Center of Excellence grant (M.J.) (CARD), the Scientific Committee of the Danish Cancer Society (KBVU) (K.M., J.N., and M.J.) (R124-A7929-15-S2, R90-A5847-14-S2, and R90-A5783), and the Novo Nordisk Foundation (M.J.) (NNF15OC0016914). We are grateful to Inger Ødum Nielsen for crucial comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mesut Bilgin or Kenji Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bilgin, M., Nylandsted, J., Jäättelä, M., Maeda, K. (2017). Quantitative Profiling of Lysosomal Lipidome by Shotgun Lipidomics. In: Öllinger, K., Appelqvist, H. (eds) Lysosomes. Methods in Molecular Biology, vol 1594. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6934-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6934-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6932-6

  • Online ISBN: 978-1-4939-6934-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics