Skip to main content
Book cover

Lysosomes pp 293–308Cite as

Lysosomal Biology in Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1594))

Abstract

Cells depend on the lysosome for sequestration and degradation of macromolecules in order to maintain metabolic homeostasis. These membrane-enclosed organelles can receive intracellular and extracellular cargo through endocytosis, phagocytosis, and autophagy. Lysosomes establish acidic environments to activate enzymes that are able to break down biomolecules engulfed through these various pathways. Recent advances in methods to study the lysosome have allowed the discovery of extended roles for the lysosome in various diseases, including cancer, making it an attractive and targetable node for therapeutic intervention. This review focuses on key aspects of lysosomal biology in the context of cancer and how these properties can be exploited for the development of new therapeutic strategies. This will provide a contextual framework for how advances in methodology could be applied in future translational research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schröder BA, Wrocklage C, Hasilik A, Saftig P (2010) The proteome of lysosomes. Proteomics 10(22):4053–4076

    Article  PubMed  CAS  Google Scholar 

  2. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    Article  CAS  PubMed  Google Scholar 

  3. Ohkuma S, Moriyama Y, Takano T (1982) Identification and characterization of a proton pump on 'lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc Natl Acad Sci 79(9):2758–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Repnik U, Cesen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 5(1):a008755. doi:10.1101/cshperspect.a008755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rong Y, McPhee CK, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehrecke EH, Yu L, Lenardo MJ (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci U S A 108(19):7826–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lloyd JB (1996) Metabolite efflux and influx across the lysosome membrane. Subcell Biochem 27:361–386

    Article  CAS  PubMed  Google Scholar 

  7. Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15(8):305–309

    Article  CAS  PubMed  Google Scholar 

  8. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501–503

    Article  CAS  PubMed  Google Scholar 

  9. Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 8(22):407–417. doi:10.1016/j.tcb.2012.05.006

    Article  CAS  Google Scholar 

  10. Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69(7):1125–1136

    Article  CAS  PubMed  Google Scholar 

  11. Burman C, Ktistakis NT (2010) Autophagosome formation in mammalian cells. Semin Immunopathol 6(27):421–429

    Google Scholar 

  12. Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, Yoshimori T (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32(17):2336–2347. doi:10.1038/emboj.2013.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205(4):435–445. doi:10.1083/jcb.201402054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baumann K (2015) Mitophagy receptors unravelled. Nat Rev Mol Cell Biol 16(10):580

    Article  CAS  PubMed  Google Scholar 

  15. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche N, Koch S, Mauthe M, Katona I, Qualmann B, Weis J, Reggiori F, Kurth I, Hübner CA, Dikic I (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522(7556):354–358

    Article  CAS  PubMed  Google Scholar 

  16. Mijaljica D, Devenish RJ (2013) Nucleophagy at a glance. J Cell Sci 129(pt 19):4325–4330

    Article  CAS  Google Scholar 

  17. Sakaia Y, Okua M, van der Klei IJ, Kiel JA (2006) Pexophagy: autophagic degradation of peroxisomes. Mol Cell Res 1763(12):1767–1775

    Google Scholar 

  18. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR, Settleman J, Stephanopoulosn G, Dyson NJ, Zoncu R, Ramaswamy S, Haas W, Bardeesy N (2015) Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524(7565):361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477

    CAS  PubMed  Google Scholar 

  20. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 19(20):3852–3866. doi:10.1093/hmg/ddr306

    Article  CAS  Google Scholar 

  22. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14(5):283–296. doi:10.1038/nrm3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540. doi:10.1042/BJ20111451

    Article  CAS  PubMed  Google Scholar 

  24. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. doi:10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13(24):7271–7279. doi:10.1158/1078-0432.CCR-07-1595

    Article  CAS  PubMed  Google Scholar 

  26. Yu F, Chen Z, Wang B, Jin Z, Hou Y, Ma S, Liu X (2016) The role of lysosome in cell death regulation. Tumour Biol 37(2):1427–1436

    Article  CAS  PubMed  Google Scholar 

  27. Kraya AA, Piao S, Xu X, Zhang G, Herlyn M, Gimotty P, Levine B, Amaravadi RK, Speicher DW (2015) Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy 11(1):60–74. doi:10.4161/15548627.2014.984273

    Article  PubMed  Google Scholar 

  28. Kirkegaard T, Jäättelä M (2009) Lysosomal involvement in cell death and cancer. Biochem Biophys Acta 1793(4):746–754

    Article  CAS  PubMed  Google Scholar 

  29. Kallunki T, Olsen OD, Jäättelä M (2013) Cancer-associated lysosomal changes: friends or foes? Oncogene 32(16):1995–2004

    Article  CAS  PubMed  Google Scholar 

  30. Palermo C, Joyce JA (2008) Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 29(1):22–28

    Article  CAS  PubMed  Google Scholar 

  31. Withana NP, Blum G, Sameni M, Slaney C, Anbalagan A, Olive MB, Bidwell BN, Edgington L, Wang L, Moin K, Sloane BF, Anderson RL, Bogyo MS, Parker BS (2012) Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 72(5):1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Small DM, Burden RE, Jaworski J, Hegarty SM, Spence S, Burrows JF, McFarlane C, Kissenpfennig A, McCarthy HO, Johnston JA, Walker B, Scott CJ (2013) Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer 133(9):2102–2112

    Article  CAS  PubMed  Google Scholar 

  33. Keliher EJ, Reiner T, Earley S, Klubnick J, Tassa C, Lee AJ, Ramaswamy S, Bardeesy N, Hanahan D, DePinho RA, Castro CM, Weissleder R (2013) Targeting cathepsin E in pancreatic cancer by a small molecule allows in vivo detection. Neoplasia 15(7):684–683. doi:10.1593/neo.13276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furuta K, Ikeda M, Nakayama Y, Nakamura K, Tanaka M, Hamasaki N, Himeno M, Hamilton SR, August JT (2001) Expression of lysosome-associated membrane proteins in human colorectal neoplasms and inflammatory diseases. Am J Pathol 159(2):449–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730. doi:10.1105/tpc.105.037978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5(10):786–795

    Article  CAS  PubMed  Google Scholar 

  37. Piao S, Amaravadi RK (2016) Targeting the lysosome in cancer. Ann N Y Acad Sci 1371(1):45–54. doi:10.1111/nyas.12953

    Article  PubMed  Google Scholar 

  38. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9(8):945–953

    Article  CAS  PubMed  Google Scholar 

  39. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    CAS  PubMed  Google Scholar 

  40. Hämälistö S, Jäättelä M (2016) Lysosomes in cancer-living on the edge (of the cell). Curr Opin Cell Biol 39:69–79

    Article  PubMed  CAS  Google Scholar 

  41. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729–734

    Article  CAS  PubMed  Google Scholar 

  42. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, Kirak O, Sabatini DD, Sabatini DM (2013) Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493(7434):679–683. doi:10.1038/nature11745

    Article  CAS  PubMed  Google Scholar 

  44. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. J Biol Chem 20(7):1992–2003. doi:10.1091/mbc.E08

    Google Scholar 

  45. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5(228):ra42. doi:10.1126/scisignal.2002790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22. doi:10.1016/j.ccr.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  47. Leone RD, Amaravadi RK (2013) Autophagy: a targetable linchpin of cancer cell metabolism. Trends Endocrinol Metab 24(4):209–217. doi:10.1016/j.tem.2013.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713. doi:10.1016/j.cub.2005.02.053

    Article  CAS  PubMed  Google Scholar 

  49. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  CAS  PubMed  Google Scholar 

  50. Meo-Evoli N, Almacellas E, Massucci FA, Gentilella A, Ambrosio S, Kozma SC, Thomas G, Tauler A (2015) V-ATPase—a master effector of E2F1-mediated lysosomal trafficking, mTORC1 activation and autophagy. Oncotarget 6(28):28057–28070

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025

    Article  CAS  PubMed  Google Scholar 

  52. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, Meyuhas O, Shokat KM, Ruggero D (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17(3):249–261. doi:10.1016/j.ccr.2010.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980):332–337

    Article  CAS  PubMed  Google Scholar 

  54. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruya-Feldstein J, Pelletier J, Lowe SW (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21(24):3232–3237. doi:10.1101/gad.1604407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11(13):1050–1062

    Article  CAS  PubMed  Google Scholar 

  56. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. doi:10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elmore S (2007) Apoptosis—a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dupreza L, Wirawana E, Vanden Berghea T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11(13):1050–1062

    Article  CAS  Google Scholar 

  59. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23(16):2881–2890

    Article  CAS  PubMed  Google Scholar 

  60. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451. doi:10.1038/onc.2008.310

    Article  CAS  PubMed  Google Scholar 

  61. Eng CH, Yu K, Lucas J, White E, Abraham RT (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3(119):ra31

    Article  PubMed  CAS  Google Scholar 

  62. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Noman MZ, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, Buart S, Berchem G, Romero P, Mami-Chouaib F, Chouaib S (2011) Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 18(71):5976–5986

    Article  CAS  Google Scholar 

  64. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi:10.1128/MCB.00166-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333(6046):1109–1112. doi:10.1126/science.1201940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    Article  CAS  PubMed  Google Scholar 

  67. White E, Mehnert JM, Chan CS (2015) Autophagy, metabolism, and cancer. Clin Cancer Res 21(22):5037–5046. doi:10.1158/1078-0432.CCR-15-0490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Amaravadi RK (2008) Autophagy-induced tumor dormancy in ovarian cancer. J Clin Invest 118(12):3837–3840. doi:10.1172/JCI37667

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    Article  CAS  PubMed  Google Scholar 

  70. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176

    Article  CAS  PubMed  Google Scholar 

  71. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. doi:10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jäätteläa M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 5(153):999–1010

    Article  Google Scholar 

  73. Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J (1998) Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 3(438):150–158

    Article  Google Scholar 

  74. Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H (2001) Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 287(2):562–567

    Article  CAS  PubMed  Google Scholar 

  75. Aits S, Jäättelä M, Nylandsted J (2015) Methods for the quantification of lysosomal membrane permeabilization: a hallmark of lysosomal cell death. Methods Cell Biol 126:261–285

    Article  PubMed  Google Scholar 

  76. Erdal H, Berndtsson M, Castron J, Brunk U, Shoshan M, Linder S (2005) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci U S A 102(1):192–197

    Article  CAS  PubMed  Google Scholar 

  77. Fehrenbacher N, Gyrd-Hansen M, Poulsen B, Felbor U, Kallunki T, Boes M, Weber E, Leist M, Jäättelä M (2004) Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res 64(15):5301–5310

    Article  CAS  PubMed  Google Scholar 

  78. Maynadier M, Vezenkov LL, Amblard M, Martin V, Gandreuil C, Vaillant O, Gary-Bobo M, Basile I, Hernandez JF, Garcia M, Martinez J (2013) Dipeptide mimic oligomer transporter mediates intracellular delivery of Cathepsin D inhibitors: a potential target for cancer therapy. J Control Release 171(2):251–257

    Article  CAS  PubMed  Google Scholar 

  79. Kos J, Mitrović A, Mirković B (2014) The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 6(11):1355–1371

    Article  CAS  PubMed  Google Scholar 

  80. Duong LT, Wesolowski GA, Leung P, Oballa R, Pickarski M (2014) Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther 13(12):2898–2909. doi:10.1158/1535-7163.MCT-14-0253

    Article  CAS  PubMed  Google Scholar 

  81. Tsai JY, Lee MJ, Chang MD, Wang HC, Lin CC, Huang H (2014) Effects of novel human cathepsin S inhibitors on cell migration in human cancer cells. J Enzyme Inhib Med Chem 29(4):538–546

    Article  CAS  PubMed  Google Scholar 

  82. Lankelma JM, Voorend DM, Barwari T, Koetsveld J, Van der Spek AH, De Porto AP, Van Rooijen G, Van Noorden CJ (2010) Cathepsin L, target in cancer treatment? Life Sci 86(7–8):225–233

    Article  CAS  PubMed  Google Scholar 

  83. Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S, Ostenfeld MS, Ulanet D, Dovmark TH, Lonborg A, Vindelov SD, Hanahan D, Arenz C, Ejsing CS, Kirkegaard T, Rohde M, Nylandsted J, Jaattela M (2013) Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24(3):379–393. doi:10.1016/j.ccr.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  84. Savić R, Schuchman EH (2013) Use of acid sphingomyelinase for cancer therapy. Adv Cancer Res 117:91–115

    Article  PubMed  CAS  Google Scholar 

  85. Smith EL, Schuchman EH (2008) Acid sphingomyelinase overexpression enhances the antineoplastic effects of irradiation in vitro and in vivo. Mol Ther 16(9):1565–1571. doi:10.1038/mt.2008.145

    Article  CAS  PubMed  Google Scholar 

  86. Saftig P, Sandhoff K (2013) Cancer: killing from the inside. Nature 7471(502):312–313

    Article  CAS  Google Scholar 

  87. Leu JI, Pimkina J, Pandey P, Murphy ME, George DL (2011) HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res 9(7):936–947. doi:10.1158/1541-7786.MCR-11-0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Granato M, Lacconi V, Peddis M, Lotti LV, Di Renzo L, Gonnella R, Santarelli R, Trivedi P, Frati L, D'Orazi G, Faggioni A, Cirone M (2013) HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma. Cell Death Dis 4:e730. doi:10.1038/cddis.2013.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 1(23):33–42

    Article  Google Scholar 

  90. Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X, Wang Z, Cai J, Wang J, Zhang Y, Mao X, Zhao W, Hu S, Chen S, Wang J (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 3(100):345–356. doi:10.3324/haematol.2014.113324

    Article  CAS  Google Scholar 

  91. Kubisch R, Frohlich T, Arnold GJ, Schreiner L, von Schwarzenberg K, Roidl A, Vollmar AM, Wagner E (2014) V-ATPase inhibition by archazolid leads to lysosomal dysfunction resulting in impaired cathepsin B activation in vivo. Int J Cancer 134(10):2478–2488. doi:10.1002/ijc.28562

    Article  CAS  PubMed  Google Scholar 

  92. Kallifatidis G, Hoepfner D, Jaeg T, Guzman EA, Wright AE (2013) The marine natural product manzamine A targets vacuolar ATPases and inhibits autophagy in pancreatic cancer cells. Mar Drugs 11(9):3500–3516. doi:10.3390/md11093500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao Y, Lu Y, Ma J, Zhu L (2015) Synthesis and evaluation of cleistanthin A derivatives as potent vacuolar H+-ATPase inhibitors. Chem Biol Drug Des 86(4):691–696

    Article  CAS  PubMed  Google Scholar 

  94. Zhou S, Wang F, Wong ET, Fonkem E, Hsieh T, Wu JM, Wu E (2014) Salinomycin—a novel anti-cancer agent with known anticoccidial activities. Curr Med Chem 20(33):4095–4101

    Article  CAS  Google Scholar 

  95. Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C (2009) Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun 390(3):743–749

    Article  CAS  PubMed  Google Scholar 

  96. Kim KY, Yu SN, Lee SY, Chun SS, Choi YL, Park YM, Song CS, Chatterjee B, Ahn SC (2011) Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization. Biochem Biophys Res Commun 413(1):80–86

    Article  CAS  PubMed  Google Scholar 

  97. Yue W, Hamai A, Tonelli G, Bauvy C, Nicolas V, Tharinger H, Codogno P, Mehrpour M (2013) Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 9(5):714–729. doi:10.4161/auto.23997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zou ZZ, Nie PP, Li YW, Hou BX, Rui-Li, Shi XP, Ma ZK, Han BW, Luo XY (2015) Synergistic induction of apoptosis by salinomycin and gefitinib through lysosomal and mitochondrial dependent pathway overcomes gefitinib resistance in colorectal cancer. Oncotarget 1–19. doi: 10.18632/oncotarget.5628

    Google Scholar 

  99. Ketola K, Hilvo M, Hyotylainen T, Vuoristo A, Ruskeepaa AL, Oresic M, Kallioniemi O, Iljin K (2012) Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress. Br J Cancer 106(1):99–106. doi:10.1038/bjc.2011.530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim JH, Chae M, Kim WK, Kim YJ, Kang HS, Kim HS, Yoon S (2011) Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein. Br J Pharmacol 162(3):773–784. doi:10.1111/j.1476-5381.2010.01089.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim WK, Kim JH, Yoon K, Kim S, Ro J, Kang HS, Yoon S (2012) Salinomycin, a p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest. Invest New Drugs 30(4):1311–1318

    Article  CAS  PubMed  Google Scholar 

  102. Tang QL, Zhao ZQ, Li JC, Liang Y, Yin JQ, Zou CY, Xie XB, Zeng YX, Shen JN, Kang T, Wang J (2011) Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett 311(1):113–121

    Article  CAS  PubMed  Google Scholar 

  103. Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96(1):1–27

    Article  CAS  PubMed  Google Scholar 

  104. Fu D, Zhou J, Zhu WS, Manley PW, Wang YK, Hood T, Wylie A, Xie XS (2014) Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem 6(7):614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhitomirsky B, Assaraf YG (2015) Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget 6(2):1143–1156

    Article  PubMed  Google Scholar 

  106. Duvvuri M, Gong Y, Chatterji D, Krise JP (2004) Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem 279(31):32367–32372. doi:10.1074/jbc.M400735200

    Article  CAS  PubMed  Google Scholar 

  107. Gorden BH, Saha J, Khammanivong A, Schwartz GK, Dickerson EB (2014) Lysosomal drug sequestration as a mechanism of drug resistance in vascular sarcoma cells marked by high CSF-1R expression. Vasc Cell 6(20):1–14

    Google Scholar 

  108. Wang E, Lee MD, Dunn KW (2000) Lysosomal accumulation of drugs in drug-sensitive MES-SA but not multidrug-resistant MES-SA/Dx5 uterine sarcoma cells. J Cell Physiol 184(2):263–274

    Article  CAS  PubMed  Google Scholar 

  109. Nordstrom LU, Sironi J, Aranda E, Maisonet J, Perez-Soler R, Wu P, Schwartz EL (2015) Discovery of autophagy inhibitors with antiproliferative activity in lung and pancreatic cancer cells. ACS Med Chem Lett 6(2):134–139. doi:10.1021/ml500348p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wang T, Goodall ML, Gonzales P, Sepulveda M, Martin KR, Gately S, MacKeigan JP (2015) Synthesis of improved lysomotropic autophagy inhibitors. J Med Chem 58(7):3025–3035

    Article  CAS  PubMed  Google Scholar 

  111. Carew JS, Espitia CM, Esquivel JA, Mahalingam D, Kelly KR, Reddy G, Giles FJ, Nawrocki ST (2011) Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem 286(8):6602–6613

    Article  CAS  PubMed  Google Scholar 

  112. Luo M, Kelley MR (2004) Inhibition of the human apurinic/apyrimidinic endonuclease (Ape1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res 24(4):2127–2134

    CAS  PubMed  Google Scholar 

  113. Rebecca VW, Amaravadi RK (2016) Emerging strategies to effectively target autophagy in cancer. Oncogene 35(1):1–11. doi:10.1038/onc.2015.99

    Article  CAS  PubMed  Google Scholar 

  114. Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, Mita AC, Curiel TJ, Espitia CM, Nawrocki ST, Giles FJ, Carew JS (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10(8):1403–1414. doi:10.4161/auto.29231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, Fecher LA, Schuchter LM, Torigian DA, Panosian JT, Troxel AB, Tan KS, Heitjan DF, DeMichele AM, Vaughn DJ, Redlinger M, Alavi A, Kaiser J, Pontiggia L, Davis LE, O'Dwyer PJ, Amaravadi RK (2014) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10(8):1391–1402. doi:10.4161/auto.29119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Barnard RA, Wittenburg LA, Amaravadi RK, Gustafson DL, Thorburn A, Thamm DH (2014) Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 10(8):1415–1425. doi:10.4161/auto.29165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M, Piao S, Troxel AB, Evans TL, DeMichele AM, Nathanson KL, O'Dwyer PJ, Kaiser J, Pontiggia L, Davis LE, Amaravadi RK (2014) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10(8):1369–1379. doi:10.4161/auto.29118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O'Dwyer PJ, Davis LE, Amaravadi RK (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10(8):1359–1368. doi:10.4161/auto.28984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, Fuchs CS, McCleary NJ, Meyerhardt JA, Ng K, Schrag D, Sikora AL, Spicer BA, Killion L, Mamon H, Kimmelman AC (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19(6):637–638. doi:10.1634/theoncologist.2014-0086

    Article  PubMed  PubMed Central  Google Scholar 

  120. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117(2):326–336. doi:10.1172/JCI28833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bray K, Mathew R, Lau A, Kamphorst JJ, Fan J, Chen J, Chen HY, Ghavami A, Stein M, DiPaola RS, Zhang D, Rabinowitz JD, White E (2012) Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 7(7):e41831. doi:10.1371/journal.pone.0041831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie X, White EP, Mehnert JM (2013) Coordinate autophagy and mTOR pathway inhibition enhances cell death in melanoma. PLoS One 8(1):e55096. doi:10.1371/journal.pone.0055096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl–mediated drug resistance. Blood 110(1):313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Qiu L, Yao M, Gao M, Zhao Q (2012) Doxorubicin and chloroquine coencapsulated liposomes: preparation and improved cytotoxicity on human breast cancer cells. J Liposome Res 22(3):245–253

    Article  CAS  PubMed  Google Scholar 

  125. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17(4):654–666. doi:10.1158/1078-0432.CCR-10-2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, Lynch JP, Uehara T, Sepulveda AR, Davis LE, Winkler JD, Amaravadi RK (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci U S A 109(21):8253–8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Amaravadi RKWJ (2012) Lys05: a new lysosomal autophagy inhibitor. Autophagy 8(9):1383–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi K. Amaravadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fennelly, C., Amaravadi, R.K. (2017). Lysosomal Biology in Cancer. In: Öllinger, K., Appelqvist, H. (eds) Lysosomes. Methods in Molecular Biology, vol 1594. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6934-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6934-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6932-6

  • Online ISBN: 978-1-4939-6934-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics