Skip to main content

Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network

  • Protocol
  • First Online:
T-Cell Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1591))

Abstract

Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9:618–629

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Malhotra D, Fletcher AL, Turley SJ (2013) Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 251:160–176

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bajenoff M, Egen JG, Koo LY et al (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee M, Mandl JN, Germain RN et al (2012) The race for the prize: T-cell trafficking strategies for optimal surveillance. Blood 120:1432–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Link A, Vogt TK, Favre S et al (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8:1255–1265

    Article  CAS  PubMed  Google Scholar 

  6. Onder L, Narang P, Scandella E et al (2012) IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120:4675–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cremasco V, Woodruff MC, Onder L et al (2014) B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol 15:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown FD, Turley SJ (2015) Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J Immunol 194:1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fletcher AL, Acton SE, Knoblich K (2015) Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol 15:350–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  CAS  PubMed  Google Scholar 

  11. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  12. Jeong H, Tombor B, Albert R et al (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  CAS  PubMed  Google Scholar 

  13. Ideker T, Thorsson V, Ranish JA et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    Article  CAS  PubMed  Google Scholar 

  14. Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  15. Sporns O, Chialvo DR, Kaiser M et al (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  16. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523

    Article  PubMed  Google Scholar 

  17. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  18. Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  19. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  CAS  PubMed  Google Scholar 

  20. Cohen R, Havlin S (2003) Scale-free networks are ultrasmall. Phys Rev Lett 90:058701

    Article  PubMed  Google Scholar 

  21. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  22. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  23. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  24. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  CAS  PubMed  Google Scholar 

  25. Iyer S, Killingback T, Sundaram B et al (2013) Attack robustness and centrality of complex networks. PLoS One 8:e59613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chai Q, Onder L, Scandella E, Gil-Cruz C et al (2013) Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38:1013–1024

    Article  CAS  PubMed  Google Scholar 

  27. Novkovic M, Onder L, Cupovic J et al (2016) Topological small-world organization of the fibroblastic reticular cell network determines lymph node functionality. PLoS Biol 14(7):e1002515. doi:10.1371/journal.pbio.1002515

    Article  PubMed  PubMed Central  Google Scholar 

  28. Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273:503–511

    Article  CAS  PubMed  Google Scholar 

  29. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE 3:e0002051

    Article  PubMed  Google Scholar 

  30. Telesford QK, Joyce KE, Hayasaka S et al (2011) The ubiquity of small-world networks. Brain Connect 1:367–375

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schneider CM, Moreira AA, Andrade JS Jr et al (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci U S A 108:3838–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen R, Erez K, ben-Avraham D et al. (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85:4626–4628

    Google Scholar 

Download references

Funding

Funding was provided by European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 289720, the Swiss National Science Foundation (141918 to BL) and the Russian Science Foundation (15-11-00029 to GB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Ludewig D.V.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Novkovic, M., Onder, L., Bocharov, G., Ludewig, B. (2017). Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network. In: Rainger, G., Mcgettrick, H. (eds) T-Cell Trafficking. Methods in Molecular Biology, vol 1591. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6931-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6931-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6929-6

  • Online ISBN: 978-1-4939-6931-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics