Skip to main content

Structural Analysis of the Flagellar Component Proteins in Solution by Small Angle X-Ray Scattering

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

  • 1423 Accesses

Abstract

Small angle X-ray scattering is an increasingly utilized method for characterizing the shape and structural properties of proteins in solution. The technique is amenable to very large protein complexes and to dynamic particles with different conformational states. It is therefore ideally suited to the analysis of some flagellar motor components. Indeed, we recently used the method to analyze the solution structure of the flagellar motor protein FliG, which when combined with high-resolution snapshots of conformational states from crystal structures, led to insights into conformational transitions that are important in mediating the self-assembly of the bacterial flagellar motor. Here, we describe procedures for X-ray scattering data collection of flagellar motor components, data analysis, and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stock D, Namba K, Lee LK (2012) Nanorotors and self-assembling macromolecular machines: the torque ring of the bacterial flagellar motor. Curr Opin Biotechnol 23:545–554. doi:10.1016/j.copbio.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  2. Kojima S, Furukawa Y, Matsunami H et al (2008) Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor. J Bacteriol 190:3314–3322. doi:10.1128/JB.01710-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roujeinikova A (2008) Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Proc Natl Acad Sci USA 105:10348–10353. doi:10.1073/pnas.0803039105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Samatey FA, Matsunami H, Imada K et al (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431:1062–1068. doi:10.1038/nature02997

    Article  CAS  PubMed  Google Scholar 

  5. Samatey FA, Imada K, Nagashima S et al (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331–337. doi:10.1038/35066504

    Article  CAS  PubMed  Google Scholar 

  6. Baker MAB, Hynson RMG, Ganuelas LA et al (2016) Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor. Nat Struct Mol Biol. doi:10.1038/nsmb.3172

    PubMed  Google Scholar 

  7. Rambo RP, Tainer JA (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95:559–571. doi:10.1002/bip.21638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules. Oxford University Press, Oxford

    Book  Google Scholar 

  9. David G, Pérez J (2009) Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. J Appl Cryst 42:892–900. doi:10.1107/S0021889809029288

    Article  CAS  Google Scholar 

  10. Hynson RMG, Duff AP, Kirby N et al (2015) Differential ultracentrifugation coupled to small-angle X-ray scattering on macromolecular complexes. J Appl Cryst 48:769–775. doi:10.1107/S1600576715005051

    Article  CAS  Google Scholar 

  11. Glatter O, IUCr (1977) A new method for the evaluation of small-angle scattering data. J Appl Cryst 10:415–421. doi: 10.1107/S0021889877013879

  12. Svergun DI, IUCr (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Cryst 25:495–503. doi: 10.1107/S0021889892001663

  13. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886. doi:10.1016/S0006-3495(99)77443-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petoukhov MV, Konarev PV, Kikhney AG (2007) ATSAS 2.1-towards automated and web-supported small-angle scattering data analysis. J Appl Crystallogr. 40:S223–S228

    Article  CAS  Google Scholar 

  15. Jacques DA, Guss JM, Svergun DI, Trewhella J (2012) Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. Acta Crystallogr D Biol Crystallogr 68:620–626. doi:10.1107/S0907444912012073

    Article  CAS  PubMed  Google Scholar 

  16. Volkov VV, Svergun DI, IUCr (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Cryst 36:860–864. doi: 10.1107/S0021889803000268

  17. Tria G, Mertens HDT, Kachala M, Svergun DI (2015) Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2:207–217. doi:10.1107/S205225251500202X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28:174–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu S, Takao M, Li N et al (2014) Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Proc Natl Acad Sci USA 111:13523–13528. doi:10.1073/pnas.1324201111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Neill J, Xie M, Hijnen M, Roujeinikova A (2011) Role of the MotB linker in the assembly and activation of the bacterial flagellar motor. Acta Crystallogr D Biol Crystallogr 67:1009–1016. doi:10.1107/S0907444911041102

    Article  PubMed  Google Scholar 

  21. Konarev PV, Volkov VV, Sokolova AV et al (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282. doi:10.1107/S0021889803012779

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Australian Research Council Discovery Project Grant (DP130102219) and Discovery Early Career Research Award (DE140100262), as well as by the SAXS/WAXS beamline at the Australian Synchrotron, Victoria, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence K. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lee, L.K. (2017). Structural Analysis of the Flagellar Component Proteins in Solution by Small Angle X-Ray Scattering. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics