Skip to main content

Chemotactic Behaviors of Vibrio cholerae Cells

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

Vibrio cholerae, the causative agent of cholera, swims in aqueous environments with a single polar flagellum. In a spatial gradient of a chemical, the bacterium can migrate in “favorable” directions, a property that is termed chemotaxis. The chemotaxis of V. cholerae is not only critical for survival in various environments and but also is implicated in pathogenicity. In this chapter, we describe how to characterize the chemotactic behaviors of V. cholerae: these methods include swarm assay, temporal stimulation assay, capillary assay, and receptor methylation assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Reidl J, Klose KE (2002) Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26:125–139

    Article  CAS  PubMed  Google Scholar 

  2. Boin MA, Austin MJ, Häse CC (2004) Chemotaxis in Vibrio cholerae. FEMS Microbiol Lett 239:1–8

    Article  CAS  PubMed  Google Scholar 

  3. Alm RA, Manning PA (1990) Characterization of the hlyB gene and its role in the production of the El Tor haemolysin of Vibrio cholerae O1. Mol Microbiol 4:413–425

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee R, Das S, Mukhopadhyay K, Nag S, Chakrabortty A, Chaudhuri K (2002) Involvement of in vivo induced cheY-4 gene of Vibrio cholerae in motility, early adherence to intestinal epithelial cells and regulation of virulence factors. FEBS Lett 532:221–226

    Article  CAS  PubMed  Google Scholar 

  5. Everiss KD, Hughes KJ, Kovach ME, Peterson KM (1994) The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins. Infect Immun 62:3289–3298

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Everiss KD, Hughes KJ, Peterson KM (1994) The accessory colonization factor and toxin-coregulated pilus gene clusters are physically linked on the Vibrio cholerae O395 chromosome. DNA Seq 5:51–55

    Article  CAS  PubMed  Google Scholar 

  7. Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci U S A 101:5018–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freter R, O’Brien PC (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect Immun 34:222–233

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Freter R, Allweiss B, O’Brien PC, Halstead SA, Macsai MS (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infect Immun 34:241–249

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Freter R, O’Brien PC, Macsai MS (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 34:234–240

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta S, Chowdhury R (1997) Bile affects production of virulence factors and motility of Vibrio cholerae. Infect Immun 65:1131–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, Hillman JD, Progulske-Fox A, Handfield M, Ryan ET, Calderwood SB (2003) Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci U S A 100:8508–8513

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krukonis ES, DiRita VJ (2003) From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol 6:186–190

    Article  CAS  PubMed  Google Scholar 

  14. Lee SH, Butler SM, Camilli A (2001) Selection for in vivo regulators of bacterial virulence. Proc Natl Acad Sci U S A 98:6889–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  CAS  PubMed  Google Scholar 

  16. Gosink KK, Kobayashi R, Kawagishi I, Häse CC (2002) Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae. J Bacteriol 184:1767–1771

    Google Scholar 

  17. Hyakutake A, Homma M, Austin MJ, Boin MA, Häse CC, Kawagishi I (2005) Only one of the five CheY homologs in Vibrio cholerae directly switches flagellar rotation. J Bacteriol 187:8403–8410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishiyama S, Suzuki D, Itoh Y, Suzuki K, Tajima H, Hyakutake A, Homma M, Butler-Wu SM, Camilli A, Kawagishi I (2012) Mlp24 (McpX) of Vibrio cholerae implicated in pathogenicity functions as a chemoreceptor for multiple amino acids. Infect Immun 80:3170–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boin MA, Häse CC (2007) Characterization of Vibrio cholerae aerotaxis. FEMS Microbiol Lett 276:193–201

    Article  CAS  PubMed  Google Scholar 

  20. Nishiyama S, Takahashi Y, Yamamoto K, Suzuki D, Itoh Y, Sumita K, Uchida Y, Homma M, Imada K, Kawagishi I (2016) Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants. Sci Rep 6:20866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A 86:6973–6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alvarez-Ortega C, Harwood CS (2007) Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl Environ Microbiol 73: 7793–7795

    Google Scholar 

  23. Macnab RM, Koshland DE Jr (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A 69:2509–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Homma M, Oota H, Kojima S, Kawagishi I, Imae Y (1996) Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology 142:2777–2783

    Article  CAS  PubMed  Google Scholar 

  25. Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91

    Article  CAS  PubMed  Google Scholar 

  26. Adler J, Dahl MM (1967) A method for measuring the motility of bacteria and for comparing random and non-random motility. J Gen Microbiol 46:161–173

    Article  CAS  PubMed  Google Scholar 

  27. Mesibov R, Adler J (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112:315–326

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyd A, Simon MI (1980) Multiple electrophoretic forms of methyl-accepting chemotaxis proteins generated by stimulus-elicited methylation in Escherichia coli. J Bacteriol 143:809–815

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chelsky D, Dahlquist FW (1980) Structural studies of methyl-accepting chemotaxis proteins of Escherichia coli: evidence for multiple methylation sites. Proc Natl Acad Sci U S A 77:2434–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dunten P, Koshland DE Jr (1991) Tuning the responsiveness of a sensory receptor via covalent modification. J Biol Chem 266:1491–1496

    CAS  PubMed  Google Scholar 

  31. Engström P, Hazelbauer GL (1980) Multiple methylation of methyl-accepting chemotaxis proteins during adaptation of E. coli to chemical stimuli. Cell 20:165–171

    Article  PubMed  Google Scholar 

  32. Okumura H, Nishiyama S, Sasaki A, Homma M, Kawagishi I (1998) Chemotactic adaptation is altered by changes in the carboxy-terminal sequence conserved among the major methyl-accepting chemoreceptors. J Bacteriol 180:1862–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sowa Y, Hotta H, Homma M, Ishijima A (2003) Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol 327:1043–1051

    Article  CAS  PubMed  Google Scholar 

  34. Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007) In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol 423:365–391

    Article  CAS  PubMed  Google Scholar 

  35. Clarke S, Koshland DE Jr (1979) Membrane receptors for aspartate and serine in bacterial chemotaxis. J Biol Chem 254:9695–9702

    CAS  PubMed  Google Scholar 

  36. Glekas GD, Foster RM, Cates JR, Estrella JA, Wawrzyniak MJ, Rao CV, Ordal GW (2010) A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis. J Biol Chem 285:1870–1878

    Article  CAS  PubMed  Google Scholar 

  37. Lin LN, Li J, Brandts JF, Weis RM (1994) The serine receptor of bacterial chemotaxis exhibits half-site saturation for serine binding. Biochemistry 33:6564–6570

    Article  CAS  PubMed  Google Scholar 

  38. Tajima H, Imada K, Sakuma M, Hattori F, Nara T, Kamo N, Homma M, Kawagishi I (2011) Ligand specificity determined by differentially arranged common ligand-binding residues in bacterial amino acid chemoreceptors Tsr and Tar. J Biol Chem 286:42200–42210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. M. Nishikawa and Y. Sowa, our colleagues at Hosei University, for critically the reading manuscript and R. Iwazaki, Y. Miura and T. Nakagawa, our present or former students, for preliminary examination of some of the assay protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuro Kawagishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kawagishi, I., Nishiyama, Si. (2017). Chemotactic Behaviors of Vibrio cholerae Cells. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics