Skip to main content

Measurements of the Rotation of the Flagellar Motor by Bead Assay

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

The bacterial flagellar motor is a reversible rotary nano-machine powered by the ion flux across the cytoplasmic membrane. Each motor rotates a long helical filament that extends from the cell body at several hundreds revolutions per second. The output of the motor is characterized by its generated torque and rotational speed. The torque can be calculated as the rotational frictional drag coefficient multiplied by the angular velocity. Varieties of methods, including a bead assay, have been developed to measure the flagellar rotation rate under various load conditions on the motor. In this chapter, we describe a method to monitor the motor rotation through a position of a 1 μm bead attached to a truncated flagellar filament.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  CAS  PubMed  Google Scholar 

  2. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Article  CAS  PubMed  Google Scholar 

  3. Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382

    Article  CAS  PubMed  Google Scholar 

  4. Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74

    Article  CAS  PubMed  Google Scholar 

  5. Macnab RM (1976) Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol 4:258–265

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kudo S, Magariyama Y, Aizawa S (1990) Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346:677–680

    Article  CAS  PubMed  Google Scholar 

  7. Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magariyama Y, Sugiyama S, Muramoto K, Maekawa Y, Kawagishi I, Imae Y, Kudo S (1994) Very fast flagellar rotation. Nature 371:752

    Article  CAS  PubMed  Google Scholar 

  9. Ryu WS, Berry RM, Berg HC (2000) Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403:444–447

    Article  CAS  PubMed  Google Scholar 

  10. Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A 103:8066–8071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura S, Kami-ike N, Yokota JP, Minamino T, Namba K (2010) Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor. Proc Natl Acad Sci U S A 107:17616–17620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berg HC (1993) Random walks in biology. Princeton University Press, Princeton, NJ

    Google Scholar 

  14. Chen X, Berg HC (2000) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78:1036–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sowa Y, Hotta H, Homma M, Ishijima A (2003) Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol 327:1043–1051

    Article  CAS  PubMed  Google Scholar 

  16. Oosawa F, Hayashi S (1986) The loose coupling mechanism in molecular machines of living cells. Adv Biophys 22:151–183

    Article  CAS  PubMed  Google Scholar 

  17. Läuger P (1988) Torque and rotation rate of the bacterial flagellar motor. Biophys J 53:53–65

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berry RM (1993) Torque and switching in the bacterial flagellar motor. An electrostatic model. Biophys J 64:961–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xing J, Bai F, Berry R, Oster G (2006) Torque-speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci U S A 103:1260–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai F, Lo CJ, Berry RM, Xing J (2009) Model studies of the dynamics of bacterial flagellar motors. Biophys J 96:3154–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lo CJ, Sowa Y, Pilizota T, Berry RM (2013) Mechanism and kinetics of a sodium-driven bacterial flagellar motor. Proc Natl Acad Sci U S A 110:E2544–E2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rasband WS (1997–2016) ImageJ, U. S National Institutes of Health. Bethesda, MD, http://imagej.nih.gov/ij/

    Google Scholar 

  23. Kuwajima G (1988) Construction of a minimum-size functional flagellin of Escherichia coli. J Bacteriol 170:3305–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berg HC, Turner L (1993) Torque generated by the flagellar motor of Escherichia coli. Biophys J 65:2201–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan J, Berg HC (2008) Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci U S A 105:1182–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pilizota T, Brown MT, Leake MC, Branch RW, Berry RM, Armitage JP (2009) A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor. Proc Natl Acad Sci U S A 106:11582–11587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rowe AD, Leake MC, Morgan H, Berry RM (2003) Rapid rotation of micron and submicron dielectric particles measured using optical tweezers. J Mod Opt 50:1539–1554

    Article  CAS  Google Scholar 

  28. Sowa Y, Steel BC, Berry RM (2010) A simple backscattering microscope for fast tracking of biological molecules. Rev Sci Instrum 81:113704

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sowa Y, Homma M, Ishijima A, Berry RM (2014) Hybrid-fuel bacterial flagellar motors in Escherichia coli. Proc Natl Acad Sci U S A 111:3436–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inoue Y, Lo CJ, Fukuoka H, Takahashi H, Sowa Y, Pilizota T, Wadhams GH, Homma M, Berry RM, Ishijima A (2008) Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J Mol Biol 376:1251–1259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. I. Kawagishi and Dr. M. Nishikawa (Hosei Univ.) for critically reading the manuscript and Dr. Y.-S. Che for E. coli strains carrying fliC st allele. This work was supported by MEXT KAKENHI Grant Number JP15H01332, JSPS KAKENHI Grant Number JP15K07034, and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2013–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Sowa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kasai, T., Sowa, Y. (2017). Measurements of the Rotation of the Flagellar Motor by Bead Assay. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics