Skip to main content

Recombinant Allergens Production in Yeast

  • Protocol
  • First Online:
Book cover Food Allergens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1592))

Abstract

The methylotropic yeast Pichia pastoris has been extensively used in large-scale production of properly folded recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins such as post-translational modifications, protein processing, and a reasonably sophisticated quality control of protein folding when compared against Escherichia coli. In this chapter, we describe the modified lab procedure for cloning and expression in Pichia pastoris of common food allergens sequences from the raw fruit to the fully folded biotinylated protein product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai H, Chen L, Wan L et al (2009) High-level expression of a functional humanized anti-CTLA4 single-chain variable fragment antibody in Pichia pastoris. Appl Microbiol Biotechnol 82(1):41–48

    Article  CAS  PubMed  Google Scholar 

  2. Cregg JM, Cereghino JL, Shi JY et al (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16(1):23–52

    Article  CAS  PubMed  Google Scholar 

  3. Ellis SB, Brust PF, Koutz PJ et al (1985) Isolation of alcohol oxidase and 2 other methanol regulatable genes from the yeast pichia-pastoris. Mol Cell Biol 5(5):1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koutz P, Davis GR, Stillman C et al (1989) Structural comparison of the pichia-pastoris alcohol oxidase genes. Yeast 5(3):167–177

    Article  CAS  PubMed  Google Scholar 

  5. Tschopp JF, Brust PF, Cregg JM et al (1987) Expression of the lacz gene from 2 methanol-regulated promoters in pichia-pastoris. Nucleic Acids Res 15(9):3859–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tschopp JF, Sverlow G, Kosson R et al (1987) High-level secretion of glycosylated invertase in the methylotrophic yeast, pichia-pastoris. Bio-Technol 5(12):1305–1308

    Article  CAS  Google Scholar 

  7. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8(4):921–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cull MG, Schatz PJ (2000) Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol 326:430–440. doi:10.1016/S0076-6879(00)26068-0

    Article  CAS  PubMed  Google Scholar 

  9. Chapman-Smith A, Mulhern TD, Whelan F et al (2001) The C-terminal domain of biotin protein ligase from E-coli is required for catalytic activity. Protein Sci 10(12):2608–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Predonzani A, Arnoldi F, Lopez-Requena A et al (2008) In vivo site-specific biotinylation of proteins within the secretory pathway using a single vector system. BMC Biotechnol 8:41. doi:10.1186/1472-6750-8-41

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scholle MD, Kriplani U, Pabon A et al (2006) Mapping protease substrates by using a biotinylated phage substrate library. Chembiochem 7(5):834–838

    Article  CAS  PubMed  Google Scholar 

  12. Thie H, Binius S, Schirrmann T et al (2009) Multimerization domains for antibody phage display and antibody production. N Biotechnol 26(6):314–321

    Article  CAS  PubMed  Google Scholar 

  13. de la Cruz S, Cubillos-Zapata C, Lopez-Calleja IM et al (2015) Isolation of recombinant antibody fragments (scFv) by phage display technology for detection of almond allergens in food products. Food Control 54:322–330

    Article  Google Scholar 

  14. de la Cruz S, Alcocer M, Madrid R et al (2016) Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris. J Biotechnol 227:112–119

    Article  PubMed  Google Scholar 

  15. Cregg JM and Russell KA (1998) Transformation, in Methods in Molecular BiologyTM; Pichia protocols. In: D.R. Higgins and J.M. Cregg (eds). pp. 27–39

    Google Scholar 

  16. Arbulu S, Jimenez JJ, Gutiez L et al (2015) Cloning and expression of synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by Recombinant Pichia pastoris. Biomed Res Int 015:767183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Neophytou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Neophytou, M., Alcocer, M. (2017). Recombinant Allergens Production in Yeast. In: Lin, J., Alcocer, M. (eds) Food Allergens. Methods in Molecular Biology, vol 1592. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6925-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6925-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6923-4

  • Online ISBN: 978-1-4939-6925-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics