Skip to main content

T-Cell Proliferation Assay: Determination of Immunodominant T-Cell Epitopes of Food Allergens

  • Protocol
  • First Online:
Food Allergens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1592))

Abstract

Characterization of allergen-specific T cells is critical to understand their contribution to disease pathogenesis. The identification of immunodominant T-cell epitopes is crucial for development of T-cell-based vaccines. Peptide-specific T-cell proliferation studies are usually performed in a library of short synthetic peptides (15mer or 20mer) with 3 or 5 offset spanning the entire length of the allergen. T-cell peptide epitopes lack the primary and tertiary structure of the native protein to cross-link IgE, but retain the ability to stimulate T cells. The peptides sequences can also be obtained either by in silico approaches and in vitro binding assays. The efficacy of T-cell epitope-based peptide immunotherapy has been proven in certain allergies. The present methodology describes T-cell proliferation assays using whole blood sample from allergic subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saenz SA, Taylor BC, Artis D (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 226:172–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akdis CA (2012) Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med 18:736–749

    Article  CAS  PubMed  Google Scholar 

  3. Akdis CA, Agache I (2014) Global atlas of allergy. European Academy of Allergy and Clinical Immunology, Zurich

    Google Scholar 

  4. Scanlon ST, McKenzie AN (2012) Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol 24:707–712

    Article  CAS  PubMed  Google Scholar 

  5. Wambre E, James EA, Kwok WW (2012) Characterization of CD4+ T cell subsets in allergy. Curr Opin Immunol 24:700–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Woodfolk JA (2007) T-cell responses to allergens. J Allergy Clin Immunol 119:280–294 quiz 286–295

    Article  CAS  PubMed  Google Scholar 

  7. Akdis CA, Akdis M (2015) Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J 8:17

    Article  PubMed  PubMed Central  Google Scholar 

  8. Akdis M (2006) Healthy immune response to allergens: T regulatory cells and more. Curr Opin Immunol 18:738–744

    Article  CAS  PubMed  Google Scholar 

  9. Larche M, Akdis CA, Valenta R (2006) Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 6:761–771

    Article  CAS  PubMed  Google Scholar 

  10. Muller U, Akdis CA, Fricker M, Akdis M, Blesken T et al (1998) Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J Allergy Clin Immunol 101:747–754

    Article  CAS  PubMed  Google Scholar 

  11. Couroux P, Patel D, Armstrong K, Larche M, Hafner RP (2015) Fel d 1-derived synthetic peptide immuno-regulatory epitopes show a long-term treatment effect in cat allergic subjects. Clin Exp Allergy 45:974–981

    Article  CAS  PubMed  Google Scholar 

  12. Patel D, Couroux P, Hickey P, Salapatek AM, Laidler P et al (2013) Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J Allergy Clin Immunol 131(103–109):e101–e107

    Google Scholar 

  13. Archila LD, Jeong D, Pascal M, Bartra J, Juan M et al (2015) Jug r 2-reactive CD4(+) T cells have a dominant immune role in walnut allergy. J Allergy Clin Immunol 136:983–992 e987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruiter B, Tregoat V, M'Rabet L, Garssen J, Bruijnzeel-Koomen CA et al (2006) Characterization of T cell epitopes in alphas1-casein in cow’s milk allergic, atopic and non-atopic children. Clin Exp Allergy 36:303–310

    Article  CAS  PubMed  Google Scholar 

  15. Holen E, Elsayed S (1996) Specific T cell lines for ovalbumin, ovomucoid, lysozyme and two OA synthetic epitopes, generated from egg allergic patients' PBMC. Clin Exp Allergy 26:1080–1088

    Article  CAS  PubMed  Google Scholar 

  16. Bohle B, Radakovics A, Jahn-Schmid B, Hoffmann-Sommergruber K, Fischer GF et al (2003) Bet v 1, the major birch pollen allergen, initiates sensitization to Api g 1, the major allergen in celery: evidence at the T cell level. Eur J Immunol 33:3303–3310

    Article  PubMed  Google Scholar 

  17. de Jong EC, Spanhaak S, Martens BP, Kapsenberg ML, Penninks AH et al (1996) Food allergen (peanut)-specific TH2 clones generated from the peripheral blood of a patient with peanut allergy. J Allergy Clin Immunol 98:73–81

    Article  PubMed  Google Scholar 

  18. Pastorello EA, Monza M, Pravettoni V, Longhi R, Bonara P et al (2010) Characterization of the T-cell epitopes of the major peach allergen Pru p 3. Int Arch Allergy Immunol 153:1–12

    Article  CAS  PubMed  Google Scholar 

  19. Schulten V, Radakovics A, Hartz C, Mari A, Vazquez-Cortes S et al (2009) Characterization of the allergic T-cell response to Pru p 3, the nonspecific lipid transfer protein in peach. J Allergy Clin Immunol 124:100–107

    Article  CAS  PubMed  Google Scholar 

  20. Tordesillas L, Cuesta-Herranz J, Gonzalez-Munoz M, Pacios LF, Compes E et al (2009) T-cell epitopes of the major peach allergen, Pru p 3: identification and differential T-cell response of peach-allergic and non-allergic subjects. Mol Immunol 46:722–728

    Article  CAS  PubMed  Google Scholar 

  21. Tanabe S, Kobayashi Y, Takahata Y, Morimatsu F, Shibata R et al (2002) Some human B and T cell epitopes of bovine serum albumin, the major beef allergen. Biochem Biophys Res Commun 293:1348–1353

    Article  CAS  PubMed  Google Scholar 

  22. Ravkov EV, Pavlov IY, Martins TB, Gleich GJ, Wagner LA et al (2013) Identification and validation of shrimp-tropomyosin specific CD4 T cell epitopes. Hum Immunol 74:1542–1549

    Article  CAS  PubMed  Google Scholar 

  23. Jahn-Schmid B, Radakovics A, Luttkopf D, Scheurer S, Vieths S et al (2005) Bet v 1142-156 is the dominant T-cell epitope of the major birch pollen allergen and important for cross-reactivity with Bet v 1-related food allergens. J Allergy Clin Immunol 116:213–219

    Article  CAS  PubMed  Google Scholar 

  24. Bohle B, Radakovics A, Luttkopf D, Jahn-Schmid B, Vieths S et al (2005) Characterization of the T cell response to the major hazelnut allergen, Cor a 1.04: evidence for a relevant T cell epitope not cross-reactive with homologous pollen allergens. Clin Exp Allergy 35:1392–1399

    Article  CAS  PubMed  Google Scholar 

  25. Bohle B (2006) T-cell epitopes of food allergens. Clin Rev Allergy Immunol 30:97–108

    Article  CAS  PubMed  Google Scholar 

  26. Burks W, Sampson HA, Bannon GA (1998) Peanut allergens. Allergy 53:725–730

    Article  CAS  PubMed  Google Scholar 

  27. DeLong JH, Simpson KH, Wambre E, James EA, Robinson D et al (2011) Ara h 1-reactive T cells in individuals with peanut allergy. J Allergy Clin Immunol 127(1211–1218):e1213

    Google Scholar 

  28. Prickett SR, Voskamp AL, Phan T, Dacumos-Hill A, Mannering SI et al (2013) Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic. Clin Exp Allergy 43:684–697

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Hemelen D, Mahler V, Fischer G, Fae I, Reichl-Leb V et al (2015) HLA class II peptide tetramers vs allergen-induced proliferation for identification of allergen-specific CD4 T cells. Allergy 70:49–58

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen M, Justesen S, Lund O, Lundegaard C, Buus S (2010) NetMHCIIpan-2.0-improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res 6:–9

    Google Scholar 

  31. Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10:296

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pascal M, Konstantinou GN, Masilamani M, Lieberman J, Sampson HA (2013) In silico prediction of Ara h 2 T cell epitopes in peanut-allergic children. Clin Exp Allergy 43:116–127

    Article  CAS  PubMed  Google Scholar 

  33. Ramesh M, Yuenyongviwat A, Konstantinou GN, Lieberman J, Pascal M, et al. (2016) Peanut T-cell epitope discovery: Ara h 1. J Allergy Clin Immunol

    Google Scholar 

  34. Foster B, Foroughi S, Yin Y, Prussin C (2011) Effect of anti-IgE therapy on food allergen specific T cell responses in eosinophil associated gastrointestinal disorders. Clin Mol Allergy 9:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cesbron-Gautier A, Simon P, Achard L, Cury S, Follea G et al (2004) Luminex technology for HLA typing by PCR-SSO and identification of HLA antibody specificities. Ann Biol Clin (Paris) 62:93–98

    CAS  Google Scholar 

  36. Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ et al (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7:153

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roederer M (2002) Multiparameter FACS analysis. Curr Protoc Immunol Chapter 5: Unit 5 8

    Google Scholar 

  38. Turcanu V, Maleki SJ, Lack G (2003) Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J Clin Invest 111:1065–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wallace PK, Tario JD Jr, Fisher JL, Wallace SS, Ernstoff MS et al (2008) Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A 73:1019–1034

    Article  PubMed  Google Scholar 

  40. Dolbeare F, Gratzner H, Pallavicini MG, Gray JW (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A 80:5573–5577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soares A, Govender L, Hughes J, Mavakla W, de Kock M et al (2010) Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods 362:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhan Masilamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Masilamani, M., Pascal, M., Sampson, H.A. (2017). T-Cell Proliferation Assay: Determination of Immunodominant T-Cell Epitopes of Food Allergens. In: Lin, J., Alcocer, M. (eds) Food Allergens. Methods in Molecular Biology, vol 1592. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6925-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6925-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6923-4

  • Online ISBN: 978-1-4939-6925-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics