Skip to main content

X-Ray Microscopy for Detection of Metals in the Brain

  • Protocol
  • First Online:
Book cover Metals in the Brain

Part of the book series: Neuromethods ((NM,volume 124))

Abstract

X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. It was the need to “see inside” opaque objects, especially biological tissues, and to resolve features too small for optical microscopes or too thick for electron microscopes, that spurred the development of X-ray microscopes. Their much shorter wavelength means they are less hindered by the diffraction limit which has historically limited spatial observation to micro dimensions for visible or UV light. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of the metal elements in brain tissue. In this chapter we discuss the particular role of X-ray methods for imaging of accumulated metal species and metal-containing compounds in biological materials, particularly brain tissue. We discuss methods for synchrotron imaging of metals in brain tissues at regional, cellular, and subcellular spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkinson DY et al (2013) Nanoimaging cells using soft X-ray tomography. Methods Mol Biol 950:457–481

    Article  CAS  PubMed  Google Scholar 

  2. Do M et al (2015) Imaging and characterizing cells using tomography. Arch Biochem Biophys 581:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakazawa E et al (2011) The presence of mercury selenide in various tissues of the striped dolphin: evidence from mu-XRF-XRD and XAFS analyses. Metallomics 3(7):719–725

    Article  CAS  PubMed  Google Scholar 

  4. Korbas M et al (2010) The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem Nerosci 1(12):810–818

    Article  CAS  Google Scholar 

  5. Bacquart T et al (2007) Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near-edge structure. Anal Chem 79(19):7353–7359

    Article  CAS  PubMed  Google Scholar 

  6. Ortega R et al (2007) Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PLoS One 2(9):e925

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keogh MJ, Morris CM, Chinnery PF (2013) Neuroferritinopathy. Int Rev Neurobiol 110:91–123

    Article  CAS  PubMed  Google Scholar 

  8. Collingwood JF, Davidson MR (2014) The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light. Front Pharmacol 5:191

    Article  PubMed  PubMed Central  Google Scholar 

  9. McRae R et al (2009) In situ imaging of metals in cells and tissues. Chem Rev 109(10):4780–4827

    Article  CAS  PubMed  Google Scholar 

  10. Momose A, Fukuda J (1995) Phase-contrast radiographs of nonstained rat cerebellar specimen. Med Phys 22(4):375–379

    Article  CAS  PubMed  Google Scholar 

  11. Snigirev A, Snigireva I (2008) High energy X-ray micro-optics. C R Phys 9(5–6):624–641

    Google Scholar 

  12. Baruchel J et al (2008) Advances in synchrotron hard X-ray based imaging. C R Phys 9(5–6):624–641

    Article  CAS  Google Scholar 

  13. Koeppen AH et al (2012) Friedreich’s ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum 11(4):845–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–564

    Article  CAS  PubMed  Google Scholar 

  15. Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84(11):825–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Visanji NP et al (2013) Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson’s disease and multiple system atrophy. J Parkinsons Dis 3(4):523–537

    CAS  PubMed  Google Scholar 

  17. Tao Y et al (2014) Perturbed iron distribution in Alzheimer’s disease serum, cerebrospinal fluid, and selected brain regions: a systematic review and meta-analysis. J Alzheimers Dis 42(2):679–690

    CAS  PubMed  Google Scholar 

  18. Lobinski R et al (2010) Metallomics: guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC technical report). Pure Appl Chem 82(2):493–504

    Article  CAS  Google Scholar 

  19. Bohic S et al (2012) Biomedical applications of the ESRF synchrotron-based microspectroscopy platform. J Struct Biol 177(2):248–258

    Article  CAS  PubMed  Google Scholar 

  20. Britta W et al (2012) X-ray nano-diffraction on cytoskeletal networks. New J Phys 14(8):085013

    Article  Google Scholar 

  21. Schooneveld M, DeBeer S (2015) A close look at dose: toward L-edge XAS spectral uniformity, dosequantification and prediction of metal ion photoreduction. J Electron Spectrosc Relat Phenom 198:31–56

    Article  Google Scholar 

  22. Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  23. Bilderback DH, Elleaume P, Weckert E (2005) Review of third and next generation synchrotron light sources. J Phys B: At Mol Opt Phys 38:S773–S797

    Article  CAS  Google Scholar 

  24. Adams F, Barbante C (2015) Comprehensive analytical chemistry. Elsevier Science Ltd, Amsterdam, p 480

    Google Scholar 

  25. Scherf N, Huisken J (2015) The smart and gentle microscope. Nat Biotechnol 33(8):815–818

    Article  CAS  PubMed  Google Scholar 

  26. Briggs JAG, Lakadamyali M (2012) Imaging cellular structure across scales with correlated light, superresolution, and electron microscopy. Mol Biol Cell 23(6):979–980

    Article  CAS  PubMed Central  Google Scholar 

  27. Loussert Fonta C, Humbel BM (2015) Correlative microscopy. Arch Biochem Biophys 581:98–110

    Article  CAS  PubMed  Google Scholar 

  28. Laforce B et al (2016) Laboratory scale x-ray fluorescence tomography: instrument characterization and application in earth and environmental science. Anal Chem 88(6):3386–3391

    Article  CAS  PubMed  Google Scholar 

  29. Hare DJ et al (2015) Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution. Chem Soc Rev 44(17):5941–5958

    Article  CAS  PubMed  Google Scholar 

  30. Bartels M et al (2012) Low-dose three-dimensional hard x-ray imaging of bacterial cells. Opt Nanoscopy 1(1):10

    Article  Google Scholar 

  31. Yan H et al (2016) Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution. Sci Rep 6:20112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davies KM et al (2015) Comparative study of metal quantification in neurological tissue using laser ablation-inductively coupled plasma-mass spectrometry imaging and x-ray fluorescence microscopy. Anal Chem 87(13):6639–6645

    Article  CAS  PubMed  Google Scholar 

  33. Liu W et al (2005) Short focal length Kirkpatrick-Baez mirrors for a hard x-ray nanoprobe. Rev Sci Instrum 76(11):113701

    Article  Google Scholar 

  34. Ordavo I et al (2011) A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements. Nucl Instrum Methods Phys Res, Sect A 654(1):250–257

    Article  CAS  Google Scholar 

  35. Collingwood JF, Telling ND (2016) Iron oxides in the human brain. In: Faivre D (ed) Iron oxides: from nature to applications. Wiley VCH, Hoboken, NJ

    Google Scholar 

  36. Janssens K et al (2010) Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trends Anal Chem 29:464–478

    Article  CAS  Google Scholar 

  37. Beckhoff B (2008) Reference-free X-ray spectrometry based on metrology using synchrotron radiation. J Anal At Spectrom 23(6):845–853

    Article  CAS  Google Scholar 

  38. Kosior E et al (2012) Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for sub-cellular metal quantification. J Struct Biol 177(2):239–247

    Article  CAS  PubMed  Google Scholar 

  39. Ortega R (2011) Direct speciation analysis of inorganic elements in single cells using X-ray absorption spectroscopy. J Anal At Spectrom 26(1):23–29

    Article  CAS  Google Scholar 

  40. Collingwood JF et al (2005) In situ characterization and mapping of iron compounds in Alzheimer’s disease tissue. J Alzheimers Dis 7(4):267–272

    CAS  PubMed  Google Scholar 

  41. Yan H, Chu YS (2013) Optimization of multilayer Laue lenses for a scanning X-ray microscope. J Synchrotron Radiat 20(Pt 1):89–97

    Article  CAS  PubMed  Google Scholar 

  42. Ciccotosto GD et al (2014) Quantitation and localization of intracellular redox active metals by X-ray fluorescence microscopy in cortical neurons derived from APP and APLP2 knockout tissue. Metallomics 6(10):1894–1904

    Article  CAS  PubMed  Google Scholar 

  43. Bourassa D et al (2014) 3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography. Metallomics 6(9):1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Jonge MD, Ryan CG, Jacobsen CJ (2014) X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens. J Synchrotron Radiat 21(Pt 5):1031–1047

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vincze L et al (2004) Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. Anal Chem 76(22):6786–6791

    Article  CAS  PubMed  Google Scholar 

  46. Dimper, R. and H. Reichert 2015 ESRF upgrade programme phase II (2015-2022), Technical design study. ESRF Orange Book

    Google Scholar 

  47. Duke EM et al (2014) Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 143:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carzaniga R et al (2014) Cryo-soft X-ray tomography: a journey into the world of the native-state cell. Protoplasma 251(2):449–458

    Article  CAS  PubMed  Google Scholar 

  49. Everett J et al (2014) Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer’s disease peptide beta-amyloid. Inorg Chem 53(6):2803–2809

    Article  CAS  PubMed  Google Scholar 

  50. Gallagher JJ et al (2012) Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J Alzheimers Dis 28(1):147–161

    CAS  PubMed  Google Scholar 

  51. Miller LM et al (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155(1):30–37

    Article  CAS  PubMed  Google Scholar 

  52. Yanagi I et al (2015) Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Sci Rep 5:14656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carter EA, Rayner BS, McLeod AI, Wu LE, Marshall CP, Levina A, Aitken JB, Witting PK, Lai B, Cai Z, Vogt S, Lee YC, Chen CI, Tobin MJ, Harris HH, Lay PA (2010) Silicon nitride as a versatile growth substrate for microspectroscopic imaging and mapping of individual cells. Mol BioSyst 6:1316–1322.

    Google Scholar 

  54. Vergucht E et al (2015) Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities. J Synchrotron Radiat 22(4):1096–1105

    Article  CAS  PubMed  Google Scholar 

  55. Optics, C.f.X.-r. and A.L. Source, X-ray Data Booklet. 2009, Lawrence Berkeley National Laboratory

    Google Scholar 

  56. James SA et al (2011) Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue. Anal Bioanal Chem 401(3):853–864

    Article  CAS  PubMed  Google Scholar 

  57. Sun Y et al (2015) Optimizing detector geometry for trace element mapping by X-ray fluorescence. Ultramicroscopy 152:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Van Noorden R (2016) 24 hours at the X-ray factory. Nature 531(7596):564–567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JFC acknowledges support for this work from EPSRC grant EP/K035193/1, and thanks Diamond Light Source for access to beamline I18 (SP1125) that contributed to the material presented here, and the Advanced Light Source for access to beamline 11.0.2. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Dr. M.R. Davidson, University of Florida, is acknowledged for introducing the thin phosphor screen concept for real-time focused beam visualization. Selected text in this chapter is reprinted from Spectrochimica Acta Part B: Atomic Spectroscopy, DOI: 10.1016/j.sab.2017.02.013, J.F. Collingwood and F. Adams, Chemical imaging analysis of the brain with X-ray methods, Copyright 2017, with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna F. Collingwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Collingwood, J.F., Adams, F. (2017). X-Ray Microscopy for Detection of Metals in the Brain. In: White, A. (eds) Metals in the Brain. Neuromethods, vol 124. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6918-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6918-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6916-6

  • Online ISBN: 978-1-4939-6918-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics