Skip to main content

Measuring Changes in Brain Manganese or Iron Using Magnetic Resonance Imaging (MRI)

  • Protocol
  • First Online:
  • 658 Accesses

Part of the book series: Neuromethods ((NM,volume 124))

Abstract

There are many diseases of the brain in which the transition metals manganese (Mn) and iron (Fe) are known or suspected to play a role. The magnetic resonance imaging (MRI) signal is sensitive to these paramagnetic metals; hence, quantitative MRI (qMRI) can be used to measure changes in Mn or Fe concentrations in vivo in animal models of brain disease. Here, we specifically describe how to measure changes in Mn in the brain from qMRI measurements of the longitudinal relaxation rate, R 1, in rats at a magnetic field strength of 7 T. We further discuss how to extend the method to measure changes in Mn or Fe from other qMRI parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann N Y Acad Sci 1012:115–128

    Article  CAS  PubMed  Google Scholar 

  2. Bouabid S, Tinakoua A, Lakhdar-Ghazal N, Benazzouz A (2016) Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem 136(4): 677–691 doi:10.1111/jnc.13442

  3. Han JH, Chung YH, Park JD, Kim CY, Yang SO, Khang HS, Cheong HK, Lee JS, Ha CS, Song CW, Kwon IH, Sung JH, Heo JD, Kim NY, Huang M, Cho MH, Yu IJ (2008) Recovery from welding-fume-exposure-induced MRI T1 signal intensities after cessation of welding-fume exposure in brains of cynomolgus monkeys. Inhal Toxicol 20(12):1075–1083. doi:10.1080/08958370802116634

    Article  CAS  PubMed  Google Scholar 

  4. Fitsanakis VA, Zhang N, Avison MJ, Erikson KM, Gore JC, Aschner M (2011) Changes in dietary iron exacerbate regional brain manganese accumulation as determined by magnetic resonance imaging. Toxicol Sci 120(1):146–153. doi:10.1093/toxsci/kfq376

    Article  CAS  PubMed  Google Scholar 

  5. Bock NA, Paiva FF, Nascimento GC, Newman JD, Silva AC (2008) Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Res 1198:160–170. doi:10.1016/j.brainres.2007.12.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang H, Wang J, Rogers J, Xie J (2016) Brain iron metabolism dysfunction in Parkinson’s disease. Mol Neurobiol [Epub ahead of print] doi:10.1007/s12035-016-9879-1

  7. Hirsch EC (2009) Iron transport in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S209–S211. doi:10.1016/S1353-8020(09)70816-8

    Article  PubMed  Google Scholar 

  8. Valadas JS, Vos M, Verstreken P (2015) Therapeutic strategies in Parkinson’s disease: what we have learned from animal models. Ann N Y Acad Sci 1338:16–37. doi:10.1111/nyas.12577

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe T, Frahm J, Michaelis T (2010) Myelin mapping in the living mouse brain using manganese-enhanced magnetization transfer MRI. Neuroimage 49(2):1200–1204. doi:10.1016/j.neuroimage.2009.09.050

    Article  PubMed  Google Scholar 

  10. Hare DJ, Lee JK, Beavis AD, van Gramberg A, George J, Adlard PA, Finkelstein DI, Doble PA (2012) Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal Chem 84(9):3990–3997. doi:10.1021/ac300374x

    Article  CAS  PubMed  Google Scholar 

  11. Moldovan N, Al-Ebraheem A, Miksys NA, Farquharson MJ, Bock NA (2013) Altered transition metal homeostasis in mice following manganese injections for manganese-enhanced magnetic resonance imaging. Biometals 26(1):179–187. doi:10.1007/s10534-012-9605-z

    Article  CAS  PubMed  Google Scholar 

  12. Zhang N, Fitsanakis VA, Erikson KM, Aschner M, Avison MJ, Gore JC (2009) A model for the analysis of competitive relaxation effects of manganese and iron in vivo. NMR Biomed 22(4):391–404. doi:10.1002/nbm.1348

    Article  CAS  PubMed  Google Scholar 

  13. Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, Moore EG, Hainsworth LN, Umbreit JN, Conrad ME, Feng L, Lis A, Roth JA, Singleton S, Garrick LM (2003) DMT1: a mammalian transporter for multiple metals. Biometals 16(1):41–54

    Article  CAS  PubMed  Google Scholar 

  14. Gareis D, Wichmann T, Lanz T, Melkus G, Horn M, Jakob PM (2007) Mouse MRI using phased-array coils. NMR Biomed 20(3):326–334. doi:10.1002/nbm.1156

    Article  PubMed  Google Scholar 

  15. Flecknell P (2016) Laboratory animal anaesthesia, 4th edn. Elsevier, New York

    Google Scholar 

  16. Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157

    Article  PubMed  Google Scholar 

  17. Bock NA, Hashim E, Janik R, Konyer NB, Weiss M, Stanisz GJ, Turner R, Geyer S (2013) Optimizing T1-weighted imaging of cortical myelin content at 3.0 T. Neuroimage 65:1–12. doi:10.1016/j.neuroimage.2012.09.051

    Article  PubMed  Google Scholar 

  18. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates: compact, 6th edn. Elsevier, New York

    Google Scholar 

  19. Ogg RJ, Kingsley PB (2004) Optimized precision of inversion-recovery T1 measurements for constrained scan time. Magn Reson Med 51(3):625–630. doi:10.1002/mrm.10734

    Article  PubMed  Google Scholar 

  20. Karlsen OT, Verhagen R, Bovee WM (1999) Parameter estimation from Rician-distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn Reson Med 41(3):614–623

    Article  CAS  PubMed  Google Scholar 

  21. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281. doi:10.1016/j.neuroimage.2009.10.002

    Article  PubMed  Google Scholar 

  22. Driencourt L, Romero CJ, Lepore M, Eggenschwiler F, Reynaud O, Just N (2016) T1 mapping of the mouse brain following fractionated manganese administration using MP2RAGE. Brain Struct Funct. doi:10.1007/s00429-016-1211-3

    PubMed  Google Scholar 

  23. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S (2010) Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257(2):455–462. doi:10.1148/radiol.10100495

    Article  PubMed  Google Scholar 

  24. Yao B, Li TQ, Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44(4):1259–1266. doi:10.1016/j.neuroimage.2008.10.029

    Article  PubMed  Google Scholar 

  25. Kim HS, Joo HJ, Woo JS, Choi YS, Choi SH, Kim H, Moon WK (2013) In vivo magnetic resonance imaging of transgenic mice expressing human ferritin. Mol Imaging Biology 15(1):48–57. doi:10.1007/s11307-012-0567-x

    Article  Google Scholar 

  26. Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33(1):1–25. doi:10.1016/j.mri.2014.09.004

    Article  PubMed  Google Scholar 

  27. Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45(1):71–79

    Article  CAS  PubMed  Google Scholar 

  28. Lutti A, Dick F, Sereno MI, Weiskopf N (2014) Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 93(Pt 2):176–188. doi:10.1016/j.neuroimage.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  29. Dean KM, Qin Y, Palmer AE (2012) Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. Biochim Biophys Acta 1823(9):1406–1415. doi:10.1016/j.bbamcr.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bock NA, Paiva FF, Silva AC (2008) Fractionated manganese-enhanced MRI. NMR Biomed 21(5):473–478. doi:10.1002/nbm.1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. House MJ, St Pierre TG, McLean C (2008) 1.4T study of proton magnetic relaxation rates, iron concentrations, and plaque burden in Alzheimer’s disease and control postmortem brain tissue. Magn Reson Med 60(1):41–52. doi:10.1002/mrm.21586

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Bock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Desmond, K.L., Bock, N.A. (2017). Measuring Changes in Brain Manganese or Iron Using Magnetic Resonance Imaging (MRI). In: White, A. (eds) Metals in the Brain. Neuromethods, vol 124. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6918-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6918-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6916-6

  • Online ISBN: 978-1-4939-6918-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics