Skip to main content

Application of a Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles to Polyphenol Detection

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1572))

Abstract

Electrochemical biosensors provide an attractive means of analyzing the content of a biological sample due to the direct conversion of a biological event to an electronic signal. The signal transduction and the general performance of electrochemical biosensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. We show herein a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features. The use of these nanomaterials improved the electrochemical performance of the proposed biosensor.

An application of the nanostructured enzyme-based biosensor has been developed for evaluating the detection of polyphenols either in buffer solution or in real wine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  CAS  Google Scholar 

  2. Gerard GD, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359

    Article  CAS  Google Scholar 

  3. Dzyadevych SV, Soldatkin AP, Chovelon JM (2002) Assessment of the toxicity of parathion and its photodegradation products in water samples using conductometric enzyme biosensors. Anal Chim Acta 459:33–41

    Article  CAS  Google Scholar 

  4. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  5. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Article  CAS  Google Scholar 

  6. Guilbault GG, Lubrano GJ (1973) An enzyme electrode for the amperometric determination of glucose. Anal Chim Acta 64:439–455

    Article  CAS  Google Scholar 

  7. Harrison DJ, Turner RBF, Baltes HP (1988) Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood. Anal Chem 60:2002–2007

    Article  CAS  Google Scholar 

  8. Shimizu Y, Morita K (1990) Microhole array electrode as a glucose sensor. Anal Chem 62:1498–1501

    Article  CAS  Google Scholar 

  9. Cass AG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671

    Article  CAS  Google Scholar 

  10. Kulys JT, Cenas NK (1983) Oxidation of glucose oxidase from Penicillium vitale by one- and two-electron acceptors. Biochim Biophys Acta 744:57–63

    Article  CAS  Google Scholar 

  11. Kajiya Y, Tsuda R, Yoneyama H (1991) Conferment of cholesterol sensitivity on polypyrrol films by immobilization of cholesterol oxidase and ferrocene carboxylic acid ions. J Electroanal Chem 301:155–164

    Article  CAS  Google Scholar 

  12. Bartlett PN, Tebbutt P, Whitaker RG (1991) Kinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry. Prog React Kinet 16:55–155

    CAS  Google Scholar 

  13. Frew JE, Hill HAO (1988) Direct and indirect electron transfer between electrodes and redoxproteins. Eur J Biochem 172:261–269

    Article  CAS  Google Scholar 

  14. Armstrong FA, George SJ, Thomson AJ, Yates MG (1988) Direct electrochemistry in the characterisation of redox proteins: novel properties of Azotobacter 7Fe ferredoxin. FEBS Lett 234:107–110

    Article  CAS  Google Scholar 

  15. Lötzbeyer T, Schuhmann W, Schmidt HL (1996) Electron transfer principles in amperometric biosensors: direct electron transfer between enzymes and electrode surface. Sens Actuators B 33:50–54

    Article  Google Scholar 

  16. Schuhmann W (1995) Electron-transfer pathways in amperometric biosensors—ferrocene-modified enzymes entrapped in conducting polymer layers. Biosens Bioelectron 10:181–193

    Article  CAS  Google Scholar 

  17. Chaubey A, Pande KK, Singh VS, Malhotra BD (2000) Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. Anal Chim Acta 407:97–103

    Article  CAS  Google Scholar 

  18. Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9:661–674

    Article  CAS  Google Scholar 

  19. Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresen J Anal Chem 366:560–568

    Article  Google Scholar 

  20. Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461

    Article  CAS  Google Scholar 

  21. Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554

    Article  CAS  Google Scholar 

  22. Wu YH, Hu SS (2007) Biosensors based on direct electron transfer in redox proteins. Microchim Acta 159:1–17

    Article  CAS  Google Scholar 

  23. Gooding JJ, Mearns F, Yang WR, Liu JQ (2003) Self-assembled monolayers into the 21st century: recent advances and applications. Electroanalysis 15:81–96

    Article  CAS  Google Scholar 

  24. Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuators B 123:1195–1205

    Article  CAS  Google Scholar 

  25. Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  26. Zhang WJ, Li GX (2004) Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 20:603–609

    Article  CAS  Google Scholar 

  27. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  28. Reinhammar B, Maldrom BG (1981) Copper proteins metal ions in biology. In: Spiro TG (ed) “Blue” copper-containing oxidases. Wiley and Sons, New York, pp 109–118

    Google Scholar 

  29. Claus H (2004) Laccases: structure, reactions, and distribution. Micron 35:93–96

    Article  CAS  Google Scholar 

  30. Luterek J, Gianfreda L, Wojtaś-Wasilewska M, Rogalski J, Jaszek M, Malarczyk E, Dawidowicz A, Ginalska G, Leonowicz A (1997) Screening of the wood-rotting fungi for laccase production: induction by ferulic acid, partial purification and immobilization of laccase from the high-laccase-producing strain, Cerrena unicolor. Acta Microbiol Pol 46:297–311

    CAS  Google Scholar 

  31. Gramss G, Voigt K-D, Kirsche B (1999) Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38:1481–1494

    Article  CAS  Google Scholar 

  32. Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  CAS  Google Scholar 

  33. Yaropolov AI, Skorobogatko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase: properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Favero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tortolini, C., Sanzò, G., Antiochia, R., Mazzei, F., Favero, G. (2017). Application of a Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles to Polyphenol Detection. In: Prickril, B., Rasooly, A. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1572. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6911-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6911-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6910-4

  • Online ISBN: 978-1-4939-6911-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics