Skip to main content

Piezoelectric Plate Sensor (PEPS) for Analysis of Specific KRAS Point Mutations at Low Copy Number in Urine Without DNA Isolation or Amplification

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1572))

Abstract

We have examined in situ detection of single-nucleotide KRAS mutations in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation without DNA isolation and amplification. In situ mutant (MT) DNA in urine in a wild type (WT) background was carried out at a flow rate of 4 mL/min and at 63 °C with the PEPS vertically situated at the center of the flow. Both the temperature and the impingement flow force discriminated the wild type. Under these conditions PEPS was shown to specifically detect KRAS MT in situ within 30 min with an analytical sensitivity of 60 copies/mL in a clinically relevant background of WT with concentrations 1000-fold greater than that of MT without DNA isolation, amplification, or labeling. For validation, detection was performed in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT, and orange WT FRMs that bound to only the captured WT. The captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4–1 even though WT was 1000-fold of MT in urine, illustrating the specificity of the point mutation detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shih WY, Luo HY, Li HD, Martorano C, Shih WH (2006) Sheet geometry enhanced giant piezoelectric coefficients. Appl Phys Lett 89. doi:10.1063/1.2408633 Artn 242913

  2. Luo H, Shih WY, Shih WH (2007) Double precursor solution coating approach for low-temperature sintering of [Pb(Mg1/3Nb2/3)O-3](0.63)[PbTiO3](0.37) solids. J Am Ceram Soc 90:3825–3829. doi:10.1111/j.1551–2916.2007.02072.x

    CAS  Google Scholar 

  3. Kirimli CE, Shih WH, Shih WY (2014) DNA hybridization detection with 100 zM sensitivity using piezoelectric plate sensors with an improved noise-reduction algorithm. Analyst 139:2754–2763. doi:10.1039/c4an00215f

    Article  CAS  Google Scholar 

  4. Zhu Q, Shih WY, Shi WH (2009) Enhanced detection resonance frequency shift of a piezoelectric microcantilever sensor by a DC bias electric field in humidity detection. Sens Actuators B-Chem 138:1–4. doi:10.1016/j.snb.2009.01.035

    Article  CAS  Google Scholar 

  5. Zhu Q, Shih WY, Shih WH (2008) Mechanism of flexural resonance frequency shift of a piezoelectric microcantilever sensor during humidity detection. Appl Phys Lett 92. doi:10.1063/1.2921050 Artn 183505

  6. Shih WY, Zhu Q, Shih WH (2008) Length and thickness dependence of longitudinal flexural resonance frequency shifts of a piezoelectric microcantilever sensor due to Young’s modulus change. J Appl Phys 104. doi:10.1063/1.2990057 Artn 074503-074503-5

  7. Zhu Q, Shih WH, Shih WY (2013) Enhanced dimethyl methylphosphonate (DMMP) detection sensitivity by lead-magnesium niobate-lead-titanate/copper piezoelectric microcantilever sensors via Young's modulus change. Sens Actuators B-Chem 182:9

    Article  Google Scholar 

  8. Wu W, Kirimli CE, Shih WH, Shih WY (2013) Real-time, in situ DNA hybridization detection with attomolar sensitivity without amplification using (pb(Mg1/3Nb2/3)O-3)(0.65)-(PbTiO3)(0.35) piezoelectric plate sensors. Biosens Bioelectron 43:391–399. doi:10.1016/j.bios.2012.12.044

    Article  CAS  Google Scholar 

  9. Wu W, Shih WY, Shih W-H (2016) eEnhancing detection sensitivity of piezoelectric plate sensor by increasing transverse electromechanical coupling constant. J Appl Phys 114: 064505

    Google Scholar 

  10. Kirimli CE, Shih WH, Shih WY (2016) Amplification-free in situ KRAS point mutation detection at 60 copies per mL in urine in a background of 1000-fold wild type. Analyst 141:1421–1433. doi:10.1039/c5an02048d.

  11. Bauer S, Bauer F (2008) Piezoelectricity. In: Heywang W, Lubitz K, Wersing W (eds) Evolution and future of a technology. Springer-Verlag, Berlin, Heidelberg, pp 161–164

    Google Scholar 

  12. Zhu Q, Shih WY, Shih WH (2007) Real-time, label-free, all-electrical detection of Salmonella typhimurium using lead titanate zirconate/gold-coated glass cantilevers at any relative humidity. Sens Actuators B-Chem 125:379–388. doi:10.1016/j.snb.2007.02.030

    Article  CAS  Google Scholar 

  13. Zhu Q, Shih WY, Shih WH (2007) In situ, in-liquid, all-electrical detection of Salmonella typhimurium using lead titanate zirconate/gold-coated glass cantilevers at any dipping depth. Biosens Bioelectron 22:3132–3138. doi:10.1016/j.bios.2007.02.005

    Article  CAS  Google Scholar 

  14. Zheng S, Choi JH, Lee SM, Hwang KS, Kim SK, Kim TS (2011) Analysis of DNA hybridization regarding the conformation of molecular layer with piezoelectric microcantilevers. Lab Chip 11:63–69. doi:10.1039/C0lc00122h

    Article  CAS  Google Scholar 

  15. Shen ZY, Shih WY, Shih WH (2006) Self-exciting, self-sensing PbZr0.53Ti0.47O3/SiO2 piezoelectric microcantilevers with femtogram/Hertz sensitivity. Appl Phys Lett 89. doi:10.1063/1.2219994 Artn 023506

  16. Lee JH, Kim TS, Yoon KH (2004) Effect of mass and stress on resonant frequency shift of functionalized Pb(Zr0.52Ti0.48)O-3 thin film microcantilever for the detection of C-reactive protein. Appl Phys Lett 84:3187–3189. doi:10.1063/1.1712028

    Article  CAS  Google Scholar 

  17. Rijal K, Mutharasan R (2007) PEMC-based method of measuring DNA hybridization at femtomolar concentration directly in human serum and in the presence of copious noncomplementary strands. Anal Chem 79:7392–7400. doi:10.1021/Ac0712042

    Article  CAS  Google Scholar 

  18. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484. doi:10.1038/nrclinonc.2013.110

    Article  CAS  Google Scholar 

  19. Robertson EG, Baxter G (2011) Tumour seeding following percutaneous needle biopsy: the real story! Clin Radiol 66:1007–1014. doi:10.1016/j.crad.2011.05.012

    Article  CAS  Google Scholar 

  20. Lipsky RH, Mazzanti CM, Rudolph JG et al (2001) DNA melting analysis for detection of single nucleotide polymorphisms. Clin Chem 47:635–644

    CAS  Google Scholar 

  21. Caruso F, Rodda E, Furlong DN, Niikura K, Okahata Y (1997) Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Anal Chem 69:2043–2049. doi:10.1021/ac961220r

    Article  CAS  Google Scholar 

  22. Su YH, Wang M, Block TM et al (2004) Transrenal DNA as a diagnostic tool: important technical notes. Ann N Y Acad Sci 1022:81–89

    Article  CAS  Google Scholar 

  23. Su YH, Wang MJ, Brenner DE et al (2004) Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J Mol Diagn 6:101–107. doi:10.1016/S1525-1578(10)60497-7

    Article  CAS  Google Scholar 

  24. Umansky SR, Tomei LD (2006) Transrenal DNA testing: progress and perspectives. Expert Rev Mol Diagn 6:153–163

    Article  CAS  Google Scholar 

  25. Kirimli CE, Shih WH, Shih WY (2013) Temperature- and flow-enhanced detection specificity of mutated DNA against the wild type with reporter microspheres. Analyst 138:6117–6126. doi:10.1039/c3an00384a

    Article  CAS  Google Scholar 

  26. Kirimli CE, Shih WH, Shih WY (2015) Specific in situ hepatitis B viral double mutation (HBVDM) detection in urine with 60 copies ml(−1) analytical sensitivity in a background of 250-fold wild type without DNA isolation and amplification. Analyst 140:1590–1598. doi:10.1039/c4an01885k

    Article  CAS  Google Scholar 

  27. Bazan V, Agnese V, Corsale S et al (2005) Specific TP53 and/or Ki-ras mutations as independent predictors of clinical outcome in sporadic colorectal adenocarcinomas: results of a 5-year gruppo oncologico dell'Italia meridionale (GOIM) prospective study. Ann Oncol 16(Suppl 4):iv50–iv55

    Google Scholar 

  28. Eser S, Schnieke A, Schneider G, Saur D (2014) Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 111:817–822. doi:10.1038/bjc.2014.215

    Article  CAS  Google Scholar 

  29. Imamura Y, Morikawa T, Liao X et al (2012) Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res 18:4753–4763

    Article  CAS  Google Scholar 

  30. Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39:D945–D950. doi:10.1093/nar/gkq929

    Article  CAS  Google Scholar 

  31. Ugozzoli LA, Latorra D, Puckett R, Arar K, Hamby K (2004) Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Anal Biochem 324:143–152

    Article  CAS  Google Scholar 

  32. Chou LS, Meadows C, Wittwer CT, Lyon E (2005) Unlabeled oligonucleotide probes modified with locked nucleic acids for improved mismatch discrimination in genotyping by melting analysis. Biotechniques 39:644 6, 8 passim

    Article  CAS  Google Scholar 

  33. Johnson MP, Haupt LM, Griffiths LR (2004) Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Res 32:e55. doi:10.1093/nar/gnh046

    Article  Google Scholar 

  34. Kierzek E, Ciesielska A, Pasternak K, Mathews DH, Turner DH, Kierzek R (2005) The influence of locked nucleic acid residues on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res 33:5082–5093. doi:10.1093/nar/gki789

    Article  CAS  Google Scholar 

  35. Koshkin AA, Singh SK, Nielsen P et al (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630 http://dx.doi.org/10.1016/S0040-4020(98)00094-5

  36. Orum H, Jakobsen MH, Koch T, Vuust J, Borre MB (1999) Detection of the factor V Leiden mutation by direct allele-specific hybridization of PCR amplicons to photoimmobilized locked nucleic acids. Clin Chem 45:1898–1905

    CAS  Google Scholar 

  37. Simeonov A, Nikiforov TT (2002) Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Res 30:e91

    Article  Google Scholar 

  38. Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S (2003) OligoDesign: Optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31:3758–3762

    Article  CAS  Google Scholar 

  39. Land MA, Webster J, Christoforou A et al (2014) Salt intake assessed by 24 h urinary sodium excretion in a random and opportunistic sample in Australia. BMJ Open 4:e003720. doi:10.1136/bmjopen-2013-003720

    Article  Google Scholar 

  40. Dugdale DC (2017) Urine Output in MDhealth. http://www.md-health.com/Normal-Urine-Output.html. Accessed 17 Feb 2017

  41. Soylu MC, Shih W-H, Shih WY (2013) Insulation by Solution 3-Mercaptopropyltrimethoxysilane (MPS) coating: effect of pH, water, and MPS content. Ind Eng Chem Res 52:2590–2597

    Article  CAS  Google Scholar 

  42. Soylu MÇ (2013) Piezoelectric plate sensor for in situ genetic detection of hepatitis B virus in serum without DNA isolation and amplification. Drexel University

    Google Scholar 

  43. Kirimli CE, Shih W-H, Shih WY (2015) Specific in situ hepatitis B viral double mutation (HBVDM) detection in urine with 60 copies/ml analytical sensitivity in a background of 250-fold wild type without DNA isolation and amplification. Analyst 140(5):1590–1598. doi:10.1039/C4AN01885K

Download references

Acknowledgment

This work was supported in part by the Coulter-Drexel Translational Research Partnership grant, the Nanotechnology Institute of Benjamin Franklin Partnership of Southeastern Pennsylvania, and National Institute of Health Grants No. R41AI112224 and R41AI120445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Y. Shih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kirimli, C.E., Shih, WH., Shih, W.Y. (2017). Piezoelectric Plate Sensor (PEPS) for Analysis of Specific KRAS Point Mutations at Low Copy Number in Urine Without DNA Isolation or Amplification. In: Prickril, B., Rasooly, A. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1572. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6911-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6911-1_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6910-4

  • Online ISBN: 978-1-4939-6911-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics