Skip to main content

All-Electrical Graphene DNA Sensor Array

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1572))

Abstract

Electrical sensing of biomolecules has been an important pursuit due to the label-free operation and chip-scale construct such sensing modality can enable. In particular, electrical biomolecular sensors based on nanomaterials such as semiconductor nanowires, carbon nanotubes, and graphene have demonstrated high sensitivity, which in the case of nanowires and carbon nanotubes can surpass typical optical detection sensitivity. Among these nanomaterials, graphene is well suited for a practical candidate for implementing a large-scale array of biomolecular sensors, as its two-dimensional morphology is readily compatible with industry standard top-down fabrication techniques. In our recent work published in 2014 Nature Communications, we demonstrated these benefits by creating DNA sensor arrays from chemical vapor deposition (CVD) graphene. The present chapter, which is a review of this recent work, outlines procedures demonstrating the use of individual graphene sites of the array in dual roles––electrophoretic electrodes for site specific probe DNA immobilization and field effect transistor (FET) sensors for detection of target DNA hybridization. The 100 fM detection sensitivity achieved in 7 out of 8 graphene FET sensors in the array combined with the alternative use of the graphene channels as electrophoretic electrodes for probe deposition represent steps toward creating an all-electrical multiplexed DNA array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  Google Scholar 

  2. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  3. Chen RJ et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989

    Article  CAS  Google Scholar 

  4. Sorgenfrei S et al (2011) Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat Nanotechnol 6:126–132

    Article  CAS  Google Scholar 

  5. Mannoor MS et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    Article  Google Scholar 

  6. Park J, Nam S, Lee M, Lieber CM (2012) Synthesis of monolithic graphene-graphite integrated electronics. Nat Mater 11:120–125

    Article  CAS  Google Scholar 

  7. Jiang S et al (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 4:2225

    Google Scholar 

  8. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    Article  CAS  Google Scholar 

  9. Hahm J, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4:51–54

    Article  CAS  Google Scholar 

  10. Stern E et al (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445:519–522

    Article  CAS  Google Scholar 

  11. MAQC Consortium (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  Google Scholar 

  12. Dalma-Weiszhausz DD, Warrington J, Tanimoto EY, Miyada CG (2006) The Affymetrix GeneChip® platform: an overview. Methods Enzymol 410:3–28

    Article  CAS  Google Scholar 

  13. The AffyMetrix DNA Microarray website (n.d.). Available on http://www.affymetrix.com. Accessed 9 Dec 2015

  14. Novoselov KS et al (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  15. Hess LH, Seifert M, Garrido JA (2013) Graphene Transistors for Bioelectronics. Proc IEEE 101:1780–1792

    Article  CAS  Google Scholar 

  16. Colombo L, Wallace RM, Ruoff RS (2013) Graphene growth and device integration. Proc IEEE 101:1536–1556

    Article  CAS  Google Scholar 

  17. Xu G et al (2014) Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nat Commun 5:4866

    Article  CAS  Google Scholar 

  18. Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9:3318–3322

    Article  CAS  Google Scholar 

  19. Dong X, Shi Y, Huang W, Chen P, Li L (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-Grown graphene sheets. Adv Mater 22:1649–1653

    Article  CAS  Google Scholar 

  20. Chen T et al (2013) Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens Bioelectron 41:103–109

    Article  Google Scholar 

  21. Star A et al (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103:921–926

    Article  CAS  Google Scholar 

  22. Li X et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363

    Article  CAS  Google Scholar 

  23. Reina A et al (2009) Large area. Few-layer graphene films on arbitrary substrates by chemical capor deposition. Nano Lett 9:30–35

    Article  CAS  Google Scholar 

  24. Poghossian A, Cherstvy A, Ingebrandt S, Offenhäusser A, Schöning MJ (2005) Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens Actuators B 111–112:470–480

    Article  Google Scholar 

  25. Kataoka-Hamai C, Miyahara Y (2011) Label-free detection of DNA by field-effect devices. IEEE J Sensors 11:3153–3160

    Article  CAS  Google Scholar 

  26. Stern E et al (2007) Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett 7:3405–3409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Abbott, J., Ham, D., Xu, G. (2017). All-Electrical Graphene DNA Sensor Array. In: Prickril, B., Rasooly, A. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1572. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6911-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6911-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6910-4

  • Online ISBN: 978-1-4939-6911-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics