Skip to main content

Quantitative Kinetic Characterization of Glycoside Hydrolases Using High-Performance Anion-Exchange Chromatography (HPAEC)

  • Protocol
  • First Online:
Protein-Carbohydrate Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1588))

Abstract

High-performance anion-exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD) is a powerful analytical technique enabling the high-resolution separation and sensitive quantification of oligosaccharides. Here, we describe a general method for the determination of glycoside hydrolase kinetics that harnesses the intrinsic power of HPAEC-PAD to simultaneously monitor the release of multiple products under conditions of low substrate conversion. Thus, the ability to track product release under initial-rate conditions with substrate concentrations as low as 5 μM enables the determination of Michaelis–Menten kinetics for glycosidase activities, including hydrolysis and transglycosylation. This technique may also be readily extended to other carbohydrate-active enzymes (CAZymes), including polysaccharide lyases, and glycosyl transferases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  2. Fushinobu S, Alves VD, Coutinho PM (2013) Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships. Curr Opin Struct Biol 23:652–659

    Article  CAS  PubMed  Google Scholar 

  3. Hemsworth GR, Déjean G, Davies GJ, Brumer H (2016) Learning from microbial strategies for polysaccharide degradation. Biochem Soc Trans 44:94–108

    Article  CAS  PubMed  Google Scholar 

  4. Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  5. Henrissat B, Sulzenbacher G, Bourne Y (2008) Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr Opin Struct Biol 18:527–533

    Article  CAS  PubMed  Google Scholar 

  6. Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444

    Article  CAS  PubMed  Google Scholar 

  7. Mewis K, Lenfant N, Lombard V, Henrissat B (2016) Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl Environ Microbiol 82(6):1686–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562

    Article  CAS  PubMed  Google Scholar 

  10. Rocklin RD, Clarke AP, Weitzhandler M (1998) Improved long-term reproducibility for pulsed amperometric detection of carbohydrates via a new quadruple-potential waveform. Anal Chem 70:1496–1501

    Article  CAS  Google Scholar 

  11. Rocklin RD, Pohl CA (1983) Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J Liq Chromatogr 6:1577–1590

    Article  CAS  Google Scholar 

  12. Corradini C, Cavazza A, Bignardi C, Corradini C, Cavazza A and Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carbohydr Chem 2012: e487564

    Google Scholar 

  13. Eklöf JM, Ruda MC, Brumer H (2012) Distinguishing xyloglucanase activity in endo-β(1→4)glucanases. Methods Enzymol 510:97–120

    Article  PubMed  Google Scholar 

  14. van Munster JM, Sanders P, ten Kate GA, Dijkhuizen L, van der Maarel MJEC (2015) Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydr Res 407:73–78

    Article  PubMed  Google Scholar 

  15. Rothenhöfer M, Grundmann M, Bernhardt G, Matysik F-M, Buschauer A (2015) High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) for the sensitive determination of hyaluronan oligosaccharides. J Chromatogr B 988:106–115

    Article  Google Scholar 

  16. Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M et al (2007) Structural evidence for the evolution of Xyloglucanase activity from Xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19:1947–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larsbrink J, Izumi A, Ibatullin Farid M, Nakhai A, Gilbert Harry J, Davies Gideon J et al (2011) Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem J 436:567–580

    Article  CAS  PubMed  Google Scholar 

  18. Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, Brumer H (2014) A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol 94(2):418–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, Brumer H (2012) Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-Transglucosylase activity in glycoside hydrolase family 31. J Biol Chem 287:43288–43299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGregor N, Morar M, Fenger TH, Stogios P, Lenfant N, Yin V et al (2016) Structure-function analysis of a mixed-linkage β-glucanase/xyloglucanase from the key ruminal Bacteroidetes Prevotella bryantii B14. J Biol Chem 291:1175–1197

    Google Scholar 

  21. Stoll VS, Blanchard JS (2009) Chapter 6 buffers: principles and practice. In: Deutscher MP, Burgess RR (eds) Methods enzymol. Academic Press, Cambridge, MA, pp 43–56

    Google Scholar 

  22. Deutscher MP (1990) Maintaining protein stability. In: Deutscher MP (ed) Guide to protein purification. Academic Press, Cambridge, MA, pp 83–89.

    Google Scholar 

  23. Cornish-Bowden A (2012) Practical aspects of kinetics. In: Fundamentals of enzyme kinetics. Portland Press Ltd, London, pp 85–106

    Google Scholar 

  24. Zhang Y, Inoue Y, Inoue S, Lee YC (1997) Separation of oligo/polymers of 5-N-acetylneuraminic Acid, 5-N-glycolylneuraminic acid, and 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid by high-performance anion-exchange chromatography with pulsed amperometric detector. Anal Biochem 250:245–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) via the Strategic Partnership Grants for Networks (for the Industrial Biocatalysis Network) and Discovery Grant programs is gratefully acknowledged. Equipment infrastructure was funded by the Canada Foundation for Innovation and the British Columbia Knowledge Development Fund. We thank Kazune Tamura (Brumer group, UBC) for comments on an early version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Brumer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

McGregor, N., Arnal, G., Brumer, H. (2017). Quantitative Kinetic Characterization of Glycoside Hydrolases Using High-Performance Anion-Exchange Chromatography (HPAEC). In: Abbott, D., Lammerts van Bueren, A. (eds) Protein-Carbohydrate Interactions. Methods in Molecular Biology, vol 1588. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6899-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6899-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6898-5

  • Online ISBN: 978-1-4939-6899-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics