Skip to main content

High Yield of Recombinant Protein in Shaken E. coli Cultures with Enzymatic Glucose Release Medium EnPresso B

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1586))

Abstract

Expression of recombinant proteins in sufficient quantities is essential for protein structure-function studies. The most commonly used method for recombinant protein production is overexpression in E. coli cultures. However, producing high yields of functional proteins in E. coli can be a challenge in conventional shaken cultures. This is often due to nonoptimal growth conditions, which result in low cell yields and insoluble or incorrectly folded target protein. To overcome the shortcomings of shake flask cultivation, we present a cultivation method based on enzymatic glucose delivery. This system mimics the fed-batch principle used in bioreactor cultivations and provides high yields of biomass and recombinant proteins in shaken cultivations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graslund S, Nordlund P, Weigelt J et al (2008) Protein production and purification. Nat Methods 5:135–146

    Article  PubMed  Google Scholar 

  2. Tartoff KD, Hobbs CA (1987) Improved media for growing plasmid and cosmid clones. Bethesda Res Lab Focus 9:12

    Google Scholar 

  3. Duttweiler HM, Gross DS (1998) Bacterial growth medium that significantly increases the yield of recombinant plasmid. Biotechniques 24:438–444

    CAS  PubMed  Google Scholar 

  4. Losen M, Frolich B, Pohl M et al (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20:1062–1068

    Article  CAS  PubMed  Google Scholar 

  5. Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4:25

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vemuri GN, Altman E, Sangurdekar DP et al (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72:3653–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189:8746–8749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neubauer P, Winter J (2001) Expression and fermentation strategies for recombinant protein production in Escherichia coli. Springer, Dordrecht, pp 195–258

    Google Scholar 

  10. Fahnert B, Lilie H, Neubauer P (2004) Inclusion bodies: formation and utilisation. Adv Biochem Eng Biotechnol 89:93–142

    CAS  PubMed  Google Scholar 

  11. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  PubMed  Google Scholar 

  12. Schein CH, Noteborn MH (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nat Biotechnol 6:291–294

    Article  CAS  Google Scholar 

  13. Sivashanmugam A, Murray V, Cui C et al (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci 18:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  15. Blommel PG, Becker KJ, Duvnjak P et al (2007) Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol Prog 23:585–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ukkonen K, Mayer S, Vasala A et al (2013) Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expr Purif 91:147–154

    Article  CAS  PubMed  Google Scholar 

  17. Neubauer P, Panula-Perälä J, Siurkus J et al (2009) EnBase™: Novel high-cell-density-culture based screening platform. Chem Ing Tech 81:1247–1248

    Article  CAS  Google Scholar 

  18. Neubauer P, Neubauer A, Vasala A (2015) Enzyme-based fed-batch technique in liquid cultures. US Patent 9,127,261

    Google Scholar 

  19. Krause M, Ukkonen K, Haataja T et al (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microb Cell Fact 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mahboudi F, Barkhordari F, Godarzi RM et al (2013) A fed-batch based cultivation mode in Escherichia coli results in improved specific activity of a novel chimeric-truncated form of tissue plasminogen activator. J Appl Microbiol 114:364–372

    Article  CAS  PubMed  Google Scholar 

  21. Zarschler K, Witecy S, Kapplusch F et al (2013) High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli. Microb Cell Fact 12:1

    Article  Google Scholar 

  22. Li J, Jaitzig J, Hillig F et al (2014) Enhanced production of the nonribosomal peptide antibiotic valinomycin in Escherichia coli through small-scale high cell density fed-batch cultivation. Appl Microbiol Biotechnol 98:591–601

    Article  CAS  PubMed  Google Scholar 

  23. Mosa A, Hutter MC, Zapp J et al (2015) Regioselective acetylation of C21 hydroxysteroids by the bacterial chloramphenicol acetyltransferase I. Chembiochem 16:1670–1679

    Article  CAS  PubMed  Google Scholar 

  24. Ta DT, Redeker ES, Billen B et al (2015) An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Protein Eng Des Sel 28:351–363

    Article  CAS  PubMed  Google Scholar 

  25. Nowicki MW, Blackburn EA, McNae IW et al (2015) A streamlined, automated protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase a using ÄKTAxpress TM. PLoS One 10:e0146164

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rubino JT, Martinelli M, Cantini F et al (2016) Structural characterization of zinc-bound Zmp1, a zinc-dependent metalloprotease secreted by Clostridium difficile. J Biol Inorg Chem 21:185–196

    Article  CAS  PubMed  Google Scholar 

  27. Fedorov AN, Baldwin TO (1997) Cotranslational protein folding. J Biol Chem 272:32715–32718

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen VD, Hatahet F, Salo KE et al (2011) Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microb Cell Fact 10:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ukkonen K, Vasala A, Ojamo H et al (2011) High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microb Cell Fact 10:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nair R, Salvi P, Banerjee S et al (2009) Yeast extract mediated autoinduction of lacUV5 promoter: an insight. N Biotechnol 26:282–288

    Article  CAS  PubMed  Google Scholar 

  31. Faust G, Stand A, Weuster-Botz D (2015) IPTG can replace lactose in auto-induction media to enhance protein expression in batch-cultured Escherichia coli. Eng Life Sci 15:824–829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Vasala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ukkonen, K., Neubauer, A., Pereira, V.J., Vasala, A. (2017). High Yield of Recombinant Protein in Shaken E. coli Cultures with Enzymatic Glucose Release Medium EnPresso B. In: Burgess-Brown, N. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 1586. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6887-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6887-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6885-5

  • Online ISBN: 978-1-4939-6887-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics