Skip to main content

Optimizing E. coli-Based Membrane Protein Production Using Lemo21(DE3) or pReX and GFP-Fusions

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Abstract

Optimizing the conditions for the production of membrane proteins in E. coli is usually a laborious and time-consuming process. Combining the Lemo21(DE3) strain or the pReX T7-based expression vector with membrane proteins C-terminally fused to Green Fluorescent Protein (GFP) greatly facilitates the optimization of membrane protein production yields. Both Lemo21(DE3) and pReX allow precise regulation of expression intensities of genes encoding membrane proteins, which is critical to identify the optimal production condition for a membrane protein. The use of GFP-fusions allows direct monitoring and visualization of membrane proteins at any stage during the production optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner S, Bader ML, Drew D et al (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371

    Article  CAS  PubMed  Google Scholar 

  2. Hjelm A, Schlegel S, Baumgarten T et al (2013) Optimizing E. coli-based membrane protein production using Lemo21(DE3) and GFP-fusions. Methods Mol Biol 1033:381–400

    Article  CAS  PubMed  Google Scholar 

  3. Schlegel S, Hjelm A, Baumgarten T et al (2014) Bacterial-based membrane protein production. Biochim Biophys Acta 1843:1739–1749

    Article  CAS  PubMed  Google Scholar 

  4. Samuelson JC (2011) Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. Methods Mol Biol 705:195–209

    Article  CAS  PubMed  Google Scholar 

  5. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  6. Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giacalone MJ, Gentile AM, Lovitt BT et al (2006) Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 40:355–364

    Article  CAS  PubMed  Google Scholar 

  8. Wagner S, Baars L, Ytterberg AJ et al (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550

    Article  CAS  PubMed  Google Scholar 

  9. Schlegel S, Löfblom J, Lee C et al (2012) Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21(DE3). J Mol Biol 423:648–659

    Article  CAS  PubMed  Google Scholar 

  10. Drew DE, von Heijne G, Nordlund P et al (2001) Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Lett 507:220–224

    Article  CAS  PubMed  Google Scholar 

  11. Drew D, Slotboom DJ, Friso G et al (2005) A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Sci 14:2011–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drew D, Lerch M, Kunji E et al (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3:303–313

    Article  CAS  PubMed  Google Scholar 

  13. Geertsma ER, Groeneveld M, Slotboom DJ et al (2008) Quality control of overexpressed membrane proteins. Proc Natl Acad Sci U S A 105:5722–5727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feilmeier BJ, Iseminger G, Schroeder D et al (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182:4068–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drew D, Sjöstrand D, Nilsson J et al (2002) Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A 99:2690–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peters C, Tsirigos KD, Shu N et al (2016) Improved topology prediction using the terminal hydrophobic helices rule. Bioinformatics 32:1158–1162

    Article  CAS  PubMed  Google Scholar 

  18. Tsirigos KD, Peters C, Shu N et al (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–W407

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  CAS  PubMed  Google Scholar 

  20. Luirink J, Yu Z, Wagner S et al (2012) Biogenesis of inner membrane proteins in Escherichia coli. Biochim Biophys Acta 1817:965–976

    Article  CAS  PubMed  Google Scholar 

  21. Hsieh JM, Besserer GM, Madej MG et al (2010) Bridging the gap: a GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-termini. Protein Sci 19:868–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Löw C, Jegerschöld C, Kovermann M et al (2012) Optimisation of over-expression in E. coli and biophysical characterisation of human membrane protein synaptogyrin 1. PLoS One 7:e38244

    Article  PubMed  PubMed Central  Google Scholar 

  23. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  24. Shaner NC, Lambert GG, Chammas A et al (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Research Council, the Carl Tryggers Stiftelse, the Marianne and Marcus Wallenberg Foundation, NIH grant 5R01GM081827-03, and the SSF supported Center for Biomembrane Research to JWdG and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n°607072 (NK and MK) and a SystemsX Transition Postdoc Fellowship (SusS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Willem de Gier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kuipers, G. et al. (2017). Optimizing E. coli-Based Membrane Protein Production Using Lemo21(DE3) or pReX and GFP-Fusions. In: Burgess-Brown, N. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 1586. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6887-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6887-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6885-5

  • Online ISBN: 978-1-4939-6887-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics