Skip to main content

Protein Folding Using a Vortex Fluidic Device

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1586))

Abstract

Essentially all biochemistry and most molecular biology experiments require recombinant proteins. However, large, hydrophobic proteins typically aggregate into insoluble and misfolded species, and are directed into inclusion bodies. Current techniques to fold proteins recovered from inclusion bodies rely on denaturation followed by dialysis or rapid dilution. Such approaches can be time consuming, wasteful, and inefficient. Here, we describe rapid protein folding using a vortex fluidic device (VFD). This process uses mechanical energy introduced into thin films to rapidly and efficiently fold proteins. With the VFD in continuous flow mode, large volumes of protein solution can be processed per day with 100-fold reductions in both folding times and buffer volumes.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123

    Article  CAS  PubMed  Google Scholar 

  2. Hunt I (2005) From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 40:1–22

    Article  CAS  PubMed  Google Scholar 

  3. Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186

    Article  CAS  PubMed  Google Scholar 

  4. Hewitt L, McDonnell JM (2004) Screening and optimizing protein production in E coli. Methods Mol Biol (Clifton, NJ) 278:1–16

    CAS  Google Scholar 

  5. Rosano Gá L, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Google Scholar 

  6. Wang L, Maji SK, Sawaya MR et al (2008) Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 6:e195

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang ESH, Liao T-Y, Lim T-S et al (2009) A new amyloid-like β-aggregate with amyloid characteristics, except fibril morphology. J Mol Biol 385:1257–1265

    Article  CAS  PubMed  Google Scholar 

  8. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185

    Article  CAS  PubMed  Google Scholar 

  9. Singh A, Upadhyay V, Upadhyay AK et al (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14:41

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qoronfleh MW, Hesterberg LK, Seefeldt MB (2007) Confronting high-throughput protein refolding using high pressure and solution screens. Protein Expr Purif 55:209–224

    Article  CAS  PubMed  Google Scholar 

  12. Radford SE (2000) Protein folding: progress made and promises ahead. Trends Biochem Sci 25:611–618

    Article  CAS  PubMed  Google Scholar 

  13. Tsumoto K, Ejima D, Kumagai I et al (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8

    Article  CAS  PubMed  Google Scholar 

  14. Peng W, Chen X, Zhu S et al (2014) Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite. Chem Commun 50:11764–11767

    Article  CAS  Google Scholar 

  15. Wahid MH, Eroglu E, LaVars SM et al (2015) Microencapsulation of bacterial strains in graphene oxide nano-sheets using vortex fluidics. RSC Adv 5:37424–37430

    Article  CAS  Google Scholar 

  16. Yasmin L, Chen X, Stubbs KA et al (2013) Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Sci Rep 3:2282

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yasmin L, Eggers PK, Skelton BW et al (2014) Thin film microfluidic synthesis of fluorescent highly substituted pyridines. Green Chem 16:3450–3453

    Article  CAS  Google Scholar 

  18. Britton J, Chalker JM, Raston CL (2015) Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine. Chem A Eur J 21:10660–10665

    Article  CAS  Google Scholar 

  19. Britton J, Raston CL (2015) Rapid high conversion of high free fatty acid feedstock into biodiesel using continuous flow vortex fluidics. RSC Adv 5:2276–2280

    Article  CAS  Google Scholar 

  20. Gandy MN, Raston CL, Stubbs KA (2015) Photoredox catalysis under shear using thin film vortex microfluidics. Chem Commun 51:11041–11044

    Article  CAS  Google Scholar 

  21. Mo J, Eggers PK, Chen X et al (2015) Shear induced carboplatin binding within the cavity of a phospholipid mimic for increased anticancer efficacy. Sci Rep 5:10414

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vimalanathan K, Gascooke JR, Suarez-Martinez I et al (2016) Fluid dynamic lateral slicing of high tensile strength carbon nanotubes. Sci Rep 6:22865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yasmin L, Stubbs KA, Raston CL (2014) Vortex fluidic promoted Diels–Alder reactions in an aqueous medium. Tetrahedron Lett 55:2246–2248

    Article  CAS  Google Scholar 

  24. Britton J, Raston CL (2014) Continuous flow vortex fluidic production of biodiesel. RSC Adv 4:49850–49854

    Article  CAS  Google Scholar 

  25. Britton J, Dalziel SB, Raston CL (2015) Continuous flow Fischer esterifications harnessing vibrational-coupled thin film fluidics. RSC Adv 5:1655–1660

    Article  CAS  Google Scholar 

  26. Britton J, Dalziel SB, Raston CL (2016) The synthesis of di-carboxylate esters using continuous flow vortex fluidics. Green Chem 18:2193–2200

    Article  CAS  Google Scholar 

  27. Yuan TZ, Ormonde CFG, Kudlacek ST et al (2015) Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies. Chembiochem 16:393–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanaka FF, Leslie P, Pranab K et al (1975) The circular dichroism of lysozyme. J Biol Chem 250:6977–6982

    CAS  PubMed  Google Scholar 

  29. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32(Web Server Issue):668–673

    Article  Google Scholar 

Download references

Acknowledgments

J.B. thanks the Taihi Hong Memorial award for support. G.W. gratefully acknowledges support from the National Institute of General Medical Sciences of the NIH (1RO1-GM100700-01). C.R. acknowledges the Australian Research Council and the Government of South Australia for their financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin L. Raston or Gregory A. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Britton, J., Smith, J.N., Raston, C.L., Weiss, G.A. (2017). Protein Folding Using a Vortex Fluidic Device. In: Burgess-Brown, N. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 1586. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6887-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6887-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6885-5

  • Online ISBN: 978-1-4939-6887-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics