Skip to main content

Acting on Folding Effectors to Improve Recombinant Protein Yields and Functional Quality

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1586))

  • 5037 Accesses

Abstract

Molecular and chemical chaperones /foldases can strongly contribute to improve the amounts and the structural quality of recombinant proteins. Several methodologies have been proposed to optimize their beneficial effects. This chapter presents a condensed summary of the biotechnological opportunities offered by this approach followed by a protocol describing the method we use for expressing disulfide bond-dependent recombinant antibodies in the cytoplasm of bacteria engineered to overexpress sulfhydryl oxidase and DsbC isomerase. The system is based on the possibility to trigger the foldase expression independently and before the induction of the target protein. As a consequence, the recombinant antibody synthesis starts only after enough foldases have accumulated to promote correct folding of the antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen CB (1972) The formation and stabilization of protein structure. Biochem J 128:737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerner MJ, Naylor DJ, Ishihama Y et al (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  CAS  PubMed  Google Scholar 

  4. de Marco A, Vigh L, Diamant S et al (2005) Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 10:329–339

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Marco A, Deuerling E, Mogk A et al (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Marco A (2007) Protocol for preparing proteins with improved solubility by co-expression with molecular chaperones in Escherichia coli. Nat Protoc 2:2632–2639

    Article  PubMed  Google Scholar 

  7. Diamant S, Rosenthal D, Azem A (2003) Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein disaggregation under stress. Mol Microbiol 49:401–410

    Article  CAS  PubMed  Google Scholar 

  8. Schultz T, Liu J, Capasso P et al (2007) The solubility of recombinant proteins expressed in Escherichia coli is increased by otsA and otsB co-transformation. Biochem Biophys Res Commun 355:234–239

    Article  CAS  PubMed  Google Scholar 

  9. Bandyopadhyay A, Saxena K, Kasturia N et al (2012) Chemical chaperones assist intracellular folding to buffer mutational variations. Nat Chem Biol 8:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diamant S, Eliahu N, Rosenthal D et al (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    Article  CAS  PubMed  Google Scholar 

  11. de Marco A (2014) Osmolytes as chemical chaperones to use in protein biotechnology. In: Doglia SM, Lotti M (eds) Protein aggregation in bacteria: functional and structural properties of inclusion bodies in bacterial cells. Wiley, Hoboken, NJ, pp 77–92

    Chapter  Google Scholar 

  12. Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17:353–358

    Article  CAS  PubMed  Google Scholar 

  13. Swalley SE, Fulghum JR, Chambers SP (2006) Screening factors effecting a response in soluble protein expression: formalized approach using design of experiments. Anal Biochem 351:122–127

    Article  CAS  PubMed  Google Scholar 

  14. Bora N, Bawa Z, Bill RM et al (2012) The implementation of a design of experiments strategy to increase recombinant protein yields in yeast (review). Methods Mol Biol 866:115–127

    Article  CAS  PubMed  Google Scholar 

  15. Nozach H, Fruchart-Gaillard C, Fenaille F (2013) High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 12:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Djender S, Schneider A, Beugnet A et al (2014) Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb Cell Fact 13:140

    Article  PubMed  PubMed Central  Google Scholar 

  17. Veggiani G, de Marco A (2011) Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Protein Expr Purif 79:111–114

    Article  CAS  PubMed  Google Scholar 

  18. Raynal B, Lenormand P, Baron B et al (2014) Quality assessment and optimization of purified protein samples: why and how? Microb Cell Fact 13:180

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nguyen VD, Hatahet F, Salo KE et al (2011) Pre-expression of a sulfhydryl-oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microb Cell Fact 10:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu JL, Zabetakis D, Walper SA et al (2014) Bioconjugates of rhizavidin with single domain antibodies as bifunctional immunoreagents. J Immunol Methods 411:37–42

    Article  CAS  PubMed  Google Scholar 

  21. de Marco A (2015) Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 14:125

    Google Scholar 

  22. Sala E, de Marco A (2010) Screening optimized protein purification protocols by coupling small-scale expression and mini-size exclusion chromatography. Protein Expr Purif 74:231–235

    Article  CAS  PubMed  Google Scholar 

  23. Nominé Y, Ristriani T, Laurent C et al (2001) A strategy for optimizing the monodispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Protein Eng 14:297–305

    Article  PubMed  Google Scholar 

  24. Capasso P, Aliprandi M, Ossolengo G et al (2009) Monodispersity of recombinant Cre recombinase correlates with its effectiveness in vivo. BMC Biotechnol 9:80

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ario de Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

de Marco, A. (2017). Acting on Folding Effectors to Improve Recombinant Protein Yields and Functional Quality. In: Burgess-Brown, N. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 1586. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6887-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6887-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6885-5

  • Online ISBN: 978-1-4939-6887-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics