Skip to main content

A Protein Expression Toolkit for Studying Signaling in T Cells

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1584))

Abstract

Innate and adaptive cellular immunity is dependent on interactions of cell surface receptors that initiate signaling, resulting in the formation of the immunological synapse and targeted delivery of effector functions. There has been considerable interest over the past 30 years in methods for isolating the extracellular regions of these receptors and components of the cytoplasmic signaling networks. This chapter describes our current protein expression toolkit used for structural studies of signaling proteins and the functional reconstitution of model cell surfaces, which comprises both bacterial and mammalian cell-based protein expression methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Merwe PA, Dushek O (2011) Mechanisms for T cell receptor triggering. Nat Rev Immunol 11:47–55

    Article  PubMed  Google Scholar 

  2. Davis SJ, van der Merwe PA (1996) The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today 17:177–187

    Article  CAS  PubMed  Google Scholar 

  3. Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJ, Klenerman D, Aricescu AR, Davis SJ (2016) Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat Immunol 17:574–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6:1253–1262

    Article  CAS  PubMed  Google Scholar 

  5. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  CAS  PubMed  Google Scholar 

  7. van der Merwe PA, Davis SJ, Shaw AS, Dustin ML (2000) Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol 12:5–21

    Article  Google Scholar 

  8. Hui E, Vale RD (2014) In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat Struct Mol Biol 21:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  CAS  PubMed  Google Scholar 

  10. Kaufman RJ, Sharp PA (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary dna gene. J Mol Biol 159:601–621

    Article  CAS  PubMed  Google Scholar 

  11. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15

    Article  CAS  PubMed  Google Scholar 

  12. N Peterson S, Kwon K (2012) The HaloTag: improving soluble expression and applications in protein functional analysis. Curr Chem Genomics 6:8–17.

    Google Scholar 

  13. Khan F, He M, Taussig MJ (2006) Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces. Anal Chem 78:3072–3079

    Article  CAS  PubMed  Google Scholar 

  14. Audic S, Lopez F, Claverie J, Poirot O, Abergel C (1997) SAmBA: an interactive software for optimizing the design of biological macromolecules crystallization experiments. Proteins 29:252–257

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Santos, A.M., Huo, J., Hatherley, D., Chirifu, M., Davis, S.J. (2017). A Protein Expression Toolkit for Studying Signaling in T Cells. In: Baldari, C., Dustin, M. (eds) The Immune Synapse. Methods in Molecular Biology, vol 1584. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6881-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6881-7_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6879-4

  • Online ISBN: 978-1-4939-6881-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics