Skip to main content

Revealing the Role of Microscale Architecture in Immune Synapse Function Through Surface Micropatterning

  • Protocol
  • First Online:
  • 3808 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1584))

Abstract

The immune synapse has emerged as a compelling example of structural complexity within cell-cell interfaces. This chapter focuses on the use of microcontact printing to isolate and investigate how spatial organization of signaling molecules drives the function of immune cells. In the process detailed here, multiple rounds of microcontact printing are combined to create patterned surfaces that control the relative spatial localization of CD3 and CD28 signaling in T cells, effectively replacing an antigen presenting cell with an engineered surface. A set of approaches used to address key issues of T cell activation are described and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227

    Article  CAS  PubMed  Google Scholar 

  2. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86. doi:10.1038/25764

    Article  CAS  PubMed  Google Scholar 

  3. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (2001) The immunological synapse. Annu Rev Immunol 19:375–396

    Article  CAS  PubMed  Google Scholar 

  4. Davis MM, Krogsgaard M, Huppa JB, Sumen C, Purbhoo MA, Irvine DJ, Wu LC, Ehrlich L (2003) Dynamics of Cell Surface Molecules During T Cell Recognition. Annu Rev Biochem 72(1):717–742

    Article  CAS  PubMed  Google Scholar 

  5. Groves JT, Dustin ML (2003) Supported planar bilayers in studies on immune cell adhesion and communication. J Immunol Methods 278(1–2):19–32

    Article  CAS  PubMed  Google Scholar 

  6. Friedl P, den Boer AT, Gunzer M (2005) Tuning immune responses: diversity and adaptation of the immunological synapse. Nat Rev Immunol 5(7):532

    Article  CAS  PubMed  Google Scholar 

  7. Krummel MF, Macara I (2006) Maintenance and modulation of T cell polarity. Nat Immunol 7(11):1143–1149

    Article  CAS  PubMed  Google Scholar 

  8. Kupfer A (2006) Signaling in the Immunological Synapse: Defining the Optimal Size. Immunity 25(1):11–13

    Article  CAS  PubMed  Google Scholar 

  9. Davis DM (2006) Intrigue at the immune synapse. Sci Am 294(2):48–56

    Article  CAS  PubMed  Google Scholar 

  10. Doh J, Irvine DJ (2006) Immunological synapse arrays: Patterned protein surfaces that modulate immunological synapse structure formation in T cells. PNAS 103(15):5700–5705. doi:10.1073/pnas.0509404103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen K, Thomas VK, Dustin ML, Kam LC (2008) Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc Natl Acad Sci 105(22):7791–7796. doi:10.1073/pnas.0710295105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "Ink" followed by chemical etching. Appl Phys Lett 63:2002

    Article  CAS  Google Scholar 

  13. Mrksich M, Chen CS, Xia Y, Dike LE, Ingber DE, Whitesides GM (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci U S A 93(20):10775–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia Y, Kim E, Mrksich M, Whitesides GM (1996) Microcontact printing of alkanethiols on copper and its application in microfabrication. Chem Mater 8(3):601–603. doi:10.1021/cm950464+

    Article  CAS  Google Scholar 

  15. Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res 235(2):305–313

    Article  CAS  PubMed  Google Scholar 

  16. James CD, Davis RC, Kam L, Craighead HG, Isaacson M, Turner JN, Shain W (1998) Patterned protein layers on solid substrates by thin stamp Microcontact Printing. Langmuir 14:741–744

    Article  CAS  Google Scholar 

  17. St. John PM, Davis R, Cady N, Czajka J, Batt CA, Craighead HG (1998) Diffraction-based cell detection using a microcontact printed antibody grating. Anal Chem 70(6):1108–1111

    Article  CAS  PubMed  Google Scholar 

  18. James CD, Davis R, Meyer M, Turner A, Turner S, Withers G, Kam L, Banker G, Craighead H, Isaacson M, Turner J, Shain W (2000) Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans Biomed Eng 47(1):17–21

    Article  CAS  PubMed  Google Scholar 

  19. Kung LA, Kam L, Hovis JS, Boxer SG (2000) Patterning hybrid surfaces of proteins and supported lipid bilayers. Langmuir 16(17):6773–6776

    Article  CAS  Google Scholar 

  20. Hovis JS, Boxer SG (2001) Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir 17:3400–3405

    Article  CAS  Google Scholar 

  21. Tsai J, Kam L (2009) Rigidity-dependent cross talk between integrin and cadherin signaling. Biophys J 96(6):L39–L41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kam L, Shain W, Turner JN, Bizios R (2001) Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin. Biomaterials 22(10):1049–1054

    Article  CAS  PubMed  Google Scholar 

  23. Shi P, Nedelec S, Wichterle H, Kam LC (2010) Combined microfluidics/protein patterning platform for pharmacological interrogation of axon pathfinding. Lab Chip 10(8):1005–1010. doi:10.1039/b922143c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oliva AA Jr, James CD, Kingman CE, Craighead HG, Banker GA (2003) Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem Res 28(11):1639–1648

    Article  CAS  PubMed  Google Scholar 

  25. Shi P, Shen K, Kam L (2007) Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Dev Neurobiol 67(13):1765–1776

    Article  CAS  PubMed  Google Scholar 

  26. Fuertes Marraco SA, Baumgaertner P, Legat A, Rufer N, Speiser DE (2012) A stepwise protocol to coat aAPC beads prevents out-competition of anti-CD3 mAb and consequent experimental artefacts. J Immunol Methods 385(1–2):90–95. doi:10.1016/j.jim.2012.07.017S0022-1759(12)00228-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  27. Bashour KT, Tsai J, Shen K, Lee JH, Sun E, Milone MC, Dustin ML, Kam LC (2014) Crosstalk between CD3 and CD28 is spatially modulated by protein lateral mobility. Mol Cell Biol 34(6):955–964

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee JH, Dustin ML, Kam LC (2015) A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays. Integr Biol (Camb) 7(11)

    Google Scholar 

  29. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    Article  CAS  PubMed  Google Scholar 

  30. Desai RA, Khan MK, Gopal SB, Chen CS (2011) Subcellular spatial segregation of integrin subtypes by patterned multicomponent surfaces. Integr Biol (Camb) 3(5):560–567. doi:10.1039/c0ib00129e

    Article  CAS  Google Scholar 

  31. Tan JL, Tien J, Chen CS (2002) Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18:519–523

    Article  CAS  Google Scholar 

  32. Bietsch A, Michel B (2000) Conformal contact and pattern stability of stamps used for soft lithography. J Appl Phys 88(7):4310–4318

    Article  CAS  Google Scholar 

  33. Lee TW, Mitrofanov O, Hsu JWP (2005) Pattern-transfer fidelity in Soft lithography: the role of pattern density and aspect ratio. Adv Funct Mater 15(10):1683–1688

    Article  CAS  Google Scholar 

  34. Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir 18(13):5314–5320

    Article  CAS  Google Scholar 

  35. Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310(5751):1191–1193

    Article  CAS  PubMed  Google Scholar 

  36. Shen K, Tsai J, Shi P, Kam LC (2009) Self-aligned supported lipid bilayers for patterning the cell-substrate interface. J Am Chem Soc 131(37):13204–13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, R01AI088377 and U24AI118669.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance C. Kam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lee, JH., Kam, L.C. (2017). Revealing the Role of Microscale Architecture in Immune Synapse Function Through Surface Micropatterning. In: Baldari, C., Dustin, M. (eds) The Immune Synapse. Methods in Molecular Biology, vol 1584. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6881-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6881-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6879-4

  • Online ISBN: 978-1-4939-6881-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics