Skip to main content
Book cover

Th9 Cells pp 127–140Cite as

Flow Cytometric Assessment of STAT Molecules in Th9 Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1585))

Abstract

IL-9-producing Th9 cells are a novel subset of T helper cells that develop independently of other T helper subsets. Th9 cells have been implicated in the pathogenesis of allergic asthma and autoimmunity, while also serving as critical effector T cells in mediating antitumor immune responses. Concomitant presence of TGF-β and IL-4 lead to the differentiation of naïve CD4+ T cells towards the Th9 phenotype. In addition, several cytokines, including IL-1β, IL-2, IL-25, and IL-33, further amplify Th9 responses. Negative regulators of Th9 cells include other cytokines such as IFN-γ, IL-23, and IL-27. Here, we describe a detailed protocol for the analysis of STAT molecules involved in the differentiation of Th9 cells and Th9 inhibition by IL-27.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252(1):104–115. doi:10.1111/imr.12028

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pan HF, Leng RX, Li XP, Zheng SG, Ye DQ (2013) Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev 24(6):515–522

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15(5):295–307. doi:10.1038/nri3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202. doi:10.1016/j.immuni.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  5. Kerzerho J, Maazi H, Speak AO, Szely N, Lombardi V, Khoo B, Geryak S, Lam J, Soroosh P, Van Snick J, Akbari O (2013) Programmed cell death ligand 2 regulates TH9 differentiation and induction of chronic airway hyperreactivity. J Allergy Clin Immunol 131(4):1048–1057, 1057.e1041–1042. doi:10.1016/j.jaci.2012.09.027

    Google Scholar 

  6. Hoppenot D, Malakauskas K, Lavinskiene S, Bajoriuniene I, Kalinauskaite V, Sakalauskas R (2015) Peripheral blood Th9 cells and eosinophil apoptosis in asthma patients. Medicina (Kaunas) 51(1):10–17. doi:10.1016/j.medici.2015.01.001

    Article  Google Scholar 

  7. Dugas B, Renauld JC, Pene J, Bonnefoy JY, Peti-Frere C, Braquet P, Bousquet J, Van Snick J, Mencia-Huerta JM (1993) Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur J Immunol 23(7):1687–1692. doi:10.1002/eji.1830230743

    Article  CAS  PubMed  Google Scholar 

  8. Louahed J, Zhou Y, Maloy WL, Rani PU, Weiss C, Tomer Y, Vink A, Renauld J, Van Snick J, Nicolaides NC, Levitt RC, Haczku A (2001) Interleukin 9 promotes influx and local maturation of eosinophils. Blood 97(4):1035–1042

    Article  CAS  PubMed  Google Scholar 

  9. Longphre M, Li D, Gallup M, Drori E, Ordonez CL, Redman T, Wenzel S, Bice DE, Fahy JV, Basbaum C (1999) Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells. J Clin Invest 104(10):1375–1382. doi:10.1172/JCI6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Temann UA, Geba GP, Rankin JA, Flavell RA (1998) Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188(7):1307–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. doi:10.1038/ni.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183(11):7169–7177. doi:10.4049/jimmunol.0901906

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li H, Nourbakhsh B, Cullimore M, Zhang GX, Rostami A (2011) IL-9 is important for T-cell activation and differentiation in autoimmune inflammation of the central nervous system. Eur J Immunol 41(8):2197–2206. doi:10.1002/eji.201041125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206(8):1653–1660. doi:10.1084/jem.20090246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Nourbakhsh B, Ciric B, Zhang GX, Rostami A (2010) Neutralization of IL-9 ameliorates experimental autoimmune encephalomyelitis by decreasing the effector T cell population. J Immunol 185(7):4095–4100. doi:10.4049/jimmunol.1000986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khy S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9(12):1347–1355. doi:10.1038/ni.1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, Lehr HA, Wirtz S, Vieth M, Waisman A, Rosenbauer F, McKenzie AN, Weigmann B, Neurath MF (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15(7):676–686. doi:10.1038/ni.2920

    Article  CAS  PubMed  Google Scholar 

  18. Yuan A, Yang H, Qi H, Cui J, Hua W, Li C, Pang Z, Zheng W, Cui G (2015) IL-9 antibody injection suppresses the inflammation in colitis mice. Biochem Biophys Res Commun 468(4):921–926. doi:10.1016/j.bbrc.2015.11.057

    Article  CAS  PubMed  Google Scholar 

  19. Vegran F, Apetoh L, Ghiringhelli F (2015) Th9 cells: a novel CD4 T-cell subset in the immune war against cancer. Cancer Res 75(3):475–479. doi:10.1158/0008-5472.CAN-14-2748

    Article  CAS  PubMed  Google Scholar 

  20. Purwar R, Schlapbach C, Xiao S, Kang HS, Elyaman W, Jiang X, Jetten AM, Khy SJ, Fuhlbrigge RC, Kuchroo VK, Clark RA, Kupper TS (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18(8):1248–1253. doi:10.1038/nm.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu Y, Hong S, Li H, Park J, Hong B, Wang L, Zheng Y, Liu Z, Xu J, He J, Yang J, Qian J, Yi Q (2012) Th9 cells promote antitumor immune responses in vivo. J Clin Invest 122(11):4160–4171. doi:10.1172/JCI65459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vegran F, Berger H, Boidot R, Mignot G, Bruchard M, Dosset M, Chalmin F, Rebe C, Derangere V, Ryffel B, Kato M, Prevost-Blondel A, Ghiringhelli F, Apetoh L (2014) The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol 15(8):758–766. doi:10.1038/ni.2925

    Article  CAS  PubMed  Google Scholar 

  23. Chatelain R, Varkila K, Coffman RL (1992) IL-4 induces a Th2 response in Leishmania major-infected mice. J Immunol 148(4):1182–1187

    CAS  PubMed  Google Scholar 

  24. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886. doi:10.1084/jem.20030152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346. doi:10.1038/ni.1659

    Article  CAS  PubMed  Google Scholar 

  26. Goswami R, Jabeen R, Yagi R, Pham D, Zhu J, Goenka S, Kaplan MH (2012) STAT6-dependent regulation of Th9 development. J Immunol 188(3):968–975. doi:10.4049/jimmunol.1102840

    Article  CAS  PubMed  Google Scholar 

  27. Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET, Attenasio A, Walsh D, Olson MR, Kim MH, Tepper RS, Sun J, Kim CH, Taparowsky EJ, Zhou B, Kaplan MH (2013) Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 123(11):4641–4653. doi:10.1172/JCI69489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kuhn R, Muller W, Palm N, Rude E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153(9):3989–3996

    CAS  PubMed  Google Scholar 

  29. Liao W, Spolski R, Li P, Du N, West EE, Ren M, Mitra S, Leonard WJ (2014) Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A 111(9):3508–3513. doi:10.1073/pnas.1301138111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang XO, Zhang H, Kim BS, Niu X, Peng J, Chen Y, Kerketta R, Lee YH, Chang SH, Corry DB, Wang D, Watowich SS, Dong C (2013) The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat Immunol 14(7):732–740. doi:10.1038/ni.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C (2010) Regulation of IL-9 expression by IL-25 signaling. Nat Immunol 11(3):250–256. doi:10.1038/ni.1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao X, Balasubramanian S, Liu W, Chu X, Wang H, Taparowsky EJ, Fu YX, Choi Y, Walsh MC, Li XC (2012) OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol 13(10):981–990. doi:10.1038/ni.2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elyaman W, Bassil R, Bradshaw EM, Orent W, Lahoud Y, Zhu B, Radtke F, Yagita H, Khy SJ (2012) Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36(4):623–634. doi:10.1016/j.immuni.2012.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murugaiyan G, Beynon V, Pires Da Cunha A, Joller N, Weiner HL (2012) IFN-gamma limits Th9-mediated autoimmune inflammation through dendritic cell modulation of IL-27. J Immunol 189(11):5277–5283. doi:10.4049/jimmunol.1200808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olson MR, Verdan FF, Hufford MM, Dent AL, Kaplan MH (2016) STAT3 impairs STAT5 activation in the development of IL-9-secreting T cells. J Immunol 196(8):3297–3304. doi:10.4049/jimmunol.1501801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiao G, Ying H, Zhao Y, Liang Y, Guo H, Shen H, Li Z, Solway J, Tao E, Chiang YJ, Lipkowitz S, Penninger JM, Langdon WY, Zhang J (2014) E3 ubiquitin ligase Cbl-b suppresses proallergic T cell development and allergic airway inflammation. Cell Rep 6(4):709–723. doi:10.1016/j.celrep.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Multiple Sclerosis Society (RG 4904A2/1 and RG 1507-05164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Murugaiyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Garo, L.P., Beynon, V., Murugaiyan, G. (2017). Flow Cytometric Assessment of STAT Molecules in Th9 Cells. In: Goswami, R. (eds) Th9 Cells. Methods in Molecular Biology, vol 1585. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6877-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6877-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6876-3

  • Online ISBN: 978-1-4939-6877-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics