Skip to main content

Measurement of Rates of Cholesterol and Fatty Acid Synthesis In Vivo Using Tritiated Water

  • Protocol
  • First Online:
Cholesterol Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1583))

Abstract

Every organ in the body is capable of synthesizing cholesterol de novo but at rates that vary with a constellation of factors. A significant proportion of the hydrogen atoms present in cholesterol that is synthesized in the body are derived from water. Thus, although water ordinarily makes up the bulk of body mass, the acute enrichment of the body water pool with a sufficiently large amount of tritiated water over a short interval of time (usually 1 h) yields measurable rates of incorporation of the labeled water into newly generated cholesterol and also fatty acids. Such data can provide a quantitative measure of how specific genetic, dietary, and pharmacological manipulations impact not just the rate of cholesterol synthesis in particular organs but also rates of whole-body cholesterol production and turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook RP (1958) Distribution of sterols in organisms and in tissues. In: Cook RP (ed) Cholesterol: chemistry, biochemistry, and pathology. Academic, New York, pp 145–180

    Chapter  Google Scholar 

  2. Grundy SM (1983) Absorption and metabolism of dietary cholesterol. Annu Rev Nutr 3:71–96

    Article  CAS  PubMed  Google Scholar 

  3. Bosner MS, Lange LG, Stenson WF, Ostlund RE Jr (1999) Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J Lipid Res 40:302–308

    CAS  PubMed  Google Scholar 

  4. Bilheimer DW, Stone NJ, Grundy SM (1979) Metabolic studies in familial hypercholesterolemia. Evidence for a gene-dosage effect in vivo. J Clin Invest 64:524–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McMurry MP, Connor WE, Lin DS, Cerqueira MT, Connor SL (1985) The absorption of cholesterol and the sterol balance in the Tarahumara Indians of Mexico fed cholesterol-free and high cholesterol diets. Am J Clin Nutr 41:1289–1298

    CAS  PubMed  Google Scholar 

  6. Sudhop T, Reber M, Tribble D, Sapre A, Taggart W, Gibbons P, Musliner T, von Bergmann K, Lütjohann D (2009) Changes in cholesterol absorption and cholesterol synthesis caused by ezetimibe and/or simvastatin in men. J Lipid Res 50:2117–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones PJ, Leitch CA, Li ZC, Connor WE (1993) Human cholesterol synthesis measurement using deuterated water. Theoretical and procedural considerations. Arterioscler Thromb Vasc Biol 13:247–253

    Article  CAS  Google Scholar 

  8. Cuchel M, Schaefer EJ, Millar JS, Jones PJH, Dolnikowski GG, Vergani C, Lichtenstein AH (1997) Lovastatin decreases de novo cholesterol synthesis and LDL Apo B-100 production rates in combined-hyperlipidemic males. Arterioscler Thromb Vasc Biol 17:1910–1917

    Article  CAS  PubMed  Google Scholar 

  9. Quan G, Xie C, Dietschy JM, Turley SD (2003) Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res 146:87–98

    Article  CAS  Google Scholar 

  10. Xie C, Lund EG, Turley SD, Russell DW, Dietschy JM (2003) Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J Lipid Res 44:1780–1789

    Article  CAS  PubMed  Google Scholar 

  11. Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT, Rousselet E, Seidah NG, Oddo S, LaFerla FM, Spencer TA, Hickey WF, Chang TY (2010) ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci U S A 107:3081–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki R, Ferris HA, Chee MJ, Maratos-Flier E, Kahn CR (2013) Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. PLoS Biol 11:e1001532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chuang JC, Valasek MA, Lopez AM, Posey KS, Repa JJ, Turley SD (2014) Sustained and selective suppression of intestinal cholesterol synthesis by Ro 48-8071, an inhibitor of 2,3-oxidosqualene:lanosterol cyclase, in the BALB/c mouse. Biochem Pharmacol 88:351–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McFarlane MR, Liang G, Engelking LJ (2014) Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine. J Biol Chem 289:2148–2156

    Article  CAS  PubMed  Google Scholar 

  15. McFarlane MR, Cantoria MJ, Linden AG, January BA, Liang G, Engelking LJ (2015) Scap is required for sterol synthesis and crypt growth in intestinal mucosa. J Lipid Res 56:1560–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turley SD, Spady DK, Dietschy JM (1997) Identification of a metabolic difference accounting for the hyper- and hyporesponder phenotypes of cynomolgus monkey. J Lipid Res 38:1598–1611

    CAS  PubMed  Google Scholar 

  17. Horton JD, Shimomura I (1999) Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr Opin Lipidol 10:143–150

    Article  CAS  PubMed  Google Scholar 

  18. Repa JJ, Turley SD, Quan G, Dietschy JM (2005) Delineation of molecular changes in intrahepatic cholesterol metabolism resulting from diminished cholesterol absorption. J Lipid Res 46:779–789

    Article  CAS  PubMed  Google Scholar 

  19. Aqul A, Lopez AM, Posey KS, Taylor AM, Repa JJ, Burns DK, Turley SD (2014) Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice. Am J Physiol Gastrointest Liver Physiol 307:G836–G847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersen JM, Dietschy JM (1979) Absolute rates of cholesterol synthesis in extrahepatic tissues measured with 3H-labeled water and 14C-labeled substrates. J Lipid Res 20:740–752

    CAS  PubMed  Google Scholar 

  21. Jeske DJ, Dietschy JM (1980) Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H]water. J Lipid Res 21:364–376

    CAS  PubMed  Google Scholar 

  22. Dietschy JM, Spady DK (1984) Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res 25:1469–1476

    CAS  PubMed  Google Scholar 

  23. Schwarz M, Russell DW, Dietschy JM, Turley SD (1998) Marked reduction in bile acid synthesis in cholesterol 7α-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J Lipid Res 39:1833–1843

    CAS  PubMed  Google Scholar 

  24. Xie CL, Turley SD, Dietschy JM (2000) Centripetal cholesterol flow from the extrahepatic organs through the liver is normal in mice with mutated Niemann-Pick type C protein (NPC1). J Lipid Res 41:1278–1289

    CAS  PubMed  Google Scholar 

  25. Chapman ME, Hu L, Plato CF, Kohan DE (2010) Bioimpedance spectroscopy for the estimation of body fluid volumes in mice. Am J Physiol Renal Physiol 299:F280–F283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jurevics H, Hostettler J, Barrett C, Morell P, Toews AD (2000) Diurnal and dietary-induced changes in cholesterol synthesis correlate with levels of mRNA for HMG-CoA reductase. J Lipid Res 41:1048–1054

    CAS  PubMed  Google Scholar 

  27. Repa JJ, Lund EG, Horton JD, Leitersdorf E, Russell DW, Dietschy JM, Turley SD (2000) Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia. Reversal by cholic acid feeding. J Biol Chem 275:39685–39692

    Article  CAS  PubMed  Google Scholar 

  28. Satoh H (1979) Residual blood volumes in organs of pregnant mice and fetuses. Tohoku J Exp Med 129:41–44

    Article  CAS  PubMed  Google Scholar 

  29. Schumann K, Szegner B, Kohler B, Pfaffl MW, Ettle T (2007) A method to assess 59Fe in residual tissue blood content in mice and its use to correct 59Fe-distribution kinetics accordingly. Toxicology 241:19–32

    Article  PubMed  Google Scholar 

  30. Turley SD, Andersen JM, Dietschy JM (1981) Rates of sterol synthesis and uptake in the major organs of the rat in vivo. J Lipid Res 22:551–569

    CAS  PubMed  Google Scholar 

  31. Spady DK, Turley SD, Dietschy JM (1983) Dissociation of hepatic cholesterol synthesis from hepatic low-density lipoprotein uptake and biliary cholesterol saturation in female and male hamsters of different ages. Biochim Biophys Acta 753:381–392

    Article  CAS  PubMed  Google Scholar 

  32. Sperry WM (1963) Quantitative isolation of sterols. J Lipid Res 4:221–225

    CAS  PubMed  Google Scholar 

  33. Rosenfeld L (1999) Cholesterol. In: Rosenfeld L (ed) Four centuries of clinical chemistry. Taylor & Francis, New York, pp 377–394

    Google Scholar 

  34. Dietschy JM, Siperstein MD (1967) Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res 8:97–104

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Much of the research described here was supported by US Public Health Service Grant R01HL009610. Each of the authors received salary support from this grant and also the Department of Internal Medicine, University of Texas Southwestern Medical Center. The corresponding author also wishes to thank John M. Dietschy M.D. for the superb training he provided in the theoretical and technical aspects of using [3H]-water for sterol synthesis measurements in many different types of experimental settings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Turley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lopez, A.M., Chuang, JC., Turley, S.D. (2017). Measurement of Rates of Cholesterol and Fatty Acid Synthesis In Vivo Using Tritiated Water. In: Gelissen, I., Brown, A. (eds) Cholesterol Homeostasis. Methods in Molecular Biology, vol 1583. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6875-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6875-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6873-2

  • Online ISBN: 978-1-4939-6875-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics