Skip to main content

Development of Recombinant Arenavirus-Based Vaccines

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1581))

Abstract

The development of arenavirus reverse genetics has provided investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. These advances in arenavirus genetics have also facilitated screens to identify anti-arenaviral drugs and the pursuit of novel strategies to generate live-attenuated arenavirus vaccine candidates. Moreover, the generation of tri-segmented (r3) arenaviruses expressing foreign genes of interest (GOI) has opened the possibility of implementing live-attenuated arenaviruses-based vaccine vector approaches. In this chapter, we will summarize the implementation of plasmid-based reverse genetics techniques for the development of r3 arenaviruses expressing foreign GOI for their implementation as vaccine vectors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Buchmeier MJ, Peter CJ, de la Torre JC (2007) Arenaviridae: the viruses and their replication, vol 2. Fields virology. Lippincott William and Wilkins, Philadelphia, PA

    Google Scholar 

  2. Lee KJ, Novella IS, Teng MN, Oldstone MB, de La Torre JC (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74(8):3470–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strecker T, Eichler R, Meulen J, Weissenhorn W, Dieter Klenk H, Garten W, Lenz O (2003) Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles (corrected). J Virol 77(19):10700–10705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100(22):12978–12983. doi:10.1073/pnas.2133782100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J (2006) Cellular factors required for Lassa virus budding. J Virol 80(8):4191–4195. doi:10.1128/JVI.80.8.4191-4195.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pinschewer DD, Perez M, Sanchez AB, de la Torre JC (2003) Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Proc Natl Acad Sci U S A 100(13):7895–7900. doi:10.1073/pnas.1332709100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beyer WR, Popplau D, Garten W, von Laer D, Lenz O (2003) Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77(5):2866–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S (2008) Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J Virol 82(15):7677–7687. doi:10.1128/JVI.00560-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee KJ, Perez M, Pinschewer DD, de la Torre JC (2002) Identification of the lymphocytic choriomeningitis virus (LCMV) proteins required to rescue LCMV RNA analogs into LCMV-like particles. J Virol 76(12):6393–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2012) Self-association of lymphocytic choriomeningitis virus nucleoprotein is mediated by its N-terminal region and is not required for its anti-interferon function. J Virol 86(6):3307–3317. doi:10.1128/JVI.05503-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2011) The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J Virol 85(24):13038–13048. doi:10.1128/JVI.05834-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pythoud C, Rodrigo WW, Pasqual G, Rothenberger S, Martinez-Sobrido L, de la Torre JC, Kunz S (2012) Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKKepsilon. J Virol 86(15):7728–7738. doi:10.1128/JVI.00187-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Sobrido L, Emonet S, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2009) Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 83(21):11330–11340. doi:10.1128/JVI.00763-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Sobrido L, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2007) Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 81(22):12696–12703. doi:10.1128/JVI.00882-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC (2006) Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80(18):9192–9199. doi:10.1128/JVI.00555-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borrow P, Martinez-Sobrido L, de la Torre JC (2010) Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2(11):2443–2480. doi:10.3390/v2112443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pythoud C, Rothenberger S, Martinez-Sobrido L, de la Torre JC, Kunz S (2015) Lymphocytic choriomeningitis virus differentially affects the virus-induced type I interferon response and mitochondrial apoptosis mediated by RIG-I/MAVS. J Virol 89(12):6240–6250. doi:10.1128/JVI.00610-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodrigo WW, Ortiz-Riano E, Pythoud C, Kunz S, de la Torre JC, Martinez-Sobrido L (2012) Arenavirus nucleoproteins prevent activation of nuclear factor kappa B. J Virol 86(15):8185–8197. doi:10.1128/JVI.07240-11

    Article  PubMed  PubMed Central  Google Scholar 

  19. Igonet S, Vaney MC, Vonrhein C, Bricogne G, Stura EA, Hengartner H, Eschli B, Rey FA (2011) X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. Proc Natl Acad Sci U S A 108(50):19967–19972. doi:10.1073/pnas.1108910108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burri DJ, da Palma JR, Kunz S, Pasquato A (2012) Envelope glycoprotein of arenaviruses. Viruses 4(10):2162–2181. doi:10.3390/v4102162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282(5396):2079–2081

    Article  CAS  PubMed  Google Scholar 

  22. Kunz S, Borrow P, Oldstone MB (2002) Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol 262:111–137

    CAS  PubMed  Google Scholar 

  23. Kunz S, Sevilla N, McGavern DB, Campbell KP, Oldstone MB (2001) Molecular analysis of the interaction of LCMV with its cellular receptor (alpha)-dystroglycan. J Cell Biol 155(2):301–310. doi:10.1083/jcb.200104103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446(7131):92–96. doi:10.1038/nature05539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pasqual G, Rojek JM, Masin M, Chatton JY, Kunz S (2011) Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog 7(9):e1002232. doi:10.1371/journal.ppat.1002232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capul AA, Perez M, Burke E, Kunz S, Buchmeier MJ, de la Torre JC (2007) Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol 81(17):9451–9460. doi:10.1128/JVI.00499-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez M, Greenwald DL, de la Torre JC (2004) Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78(20):11443–11448. doi:10.1128/JVI.78.20.11443-11448.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strecker T, Maisa A, Daffis S, Eichler R, Lenz O, Garten W (2006) The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 3:93. doi:10.1186/1743-422X-3-93

    Article  PubMed  PubMed Central  Google Scholar 

  29. Loureiro ME, D'Antuono A, Levingston Macleod JM, Lopez N (2012) Uncovering viral protein-protein interactions and their role in arenavirus life cycle. Viruses 4(9):1651–1667. doi:10.3390/v4091651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de la Torre JC (2008) Reverse genetics approaches to combat pathogenic arenaviruses. Antiviral Res 80(3):239–250. doi:10.1016/j.antiviral.2008.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  31. Emonet SE, Urata S, de la Torre JC (2011) Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411(2):416–425. doi:10.1016/j.virol.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng BY, Ortiz-Riano E, de la Torre JC, Martinez-Sobrido L (2015) Arenavirus genome rearrangement for the development of live-attenuated vaccines. J Virol. doi:10.1128/JVI.00307-15

    Google Scholar 

  33. Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2012) D471G mutation in LCMV-NP affects its ability to self-associate and results in a dominant negative effect in viral RNA synthesis. Viruses 4(10):2137–2161. doi:10.3390/v4102137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russier M, Reynard S, Carnec X, Baize S (2014) The exonuclease domain of Lassa virus nucleoprotein is involved in antigen-presenting-cell-mediated NK cell responses. J Virol 88(23):13811–13820. doi:10.1128/JVI.01908-14

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reynard S, Russier M, Fizet A, Carnec X, Baize S (2014) Exonuclease domain of the Lassa virus nucleoprotein is critical to avoid RIG-I signaling and to inhibit the innate immune response. J Virol 88(23):13923–13927. doi:10.1128/JVI.01923-14

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seregin AV, Yun NE, Miller M, Aronson J, Smith JK, Walker AG, Smith JN, Huang C, Manning JT, de la Torre JC, Paessler S (2015) The glycoprotein precursor gene of Junin virus determines the virulence of Romero strain and attenuation of Candid #1 strain in a representative animal model of Argentine Hemorrhagic Fever. J Virol. doi:10.1128/JVI.00104-15

    Google Scholar 

  37. Ortiz-Riano E, Cheng BY, Carlos de la Torre J, Martinez-Sobrido L (2013) Arenavirus reverse genetics for vaccine development. J Gen Virol 94(Pt 6):1175–1188. doi:10.1099/vir.0.051102-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng BY, Ortiz-Riano E, de la Torre JC, Martinez-Sobrido L (2013) Generation of recombinant arenavirus for vaccine development in FDA-approved Vero cells. J Vis Exp 78. doi:10.3791/50662

  39. Cheng BY, Ortiz-Riano E, Nogales A, de la Torre JC, Martinez-Sobrido L (2015) Development of live-attenuated arenavirus vaccines based on codon deoptimization. J Virol. doi:10.1128/JVI.03401-14

    Google Scholar 

  40. Rodrigo WW, de la Torre JC, Martinez-Sobrido L (2011) Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol 85(4):1684–1695. doi:10.1128/JVI.02229-10

    Article  CAS  PubMed  Google Scholar 

  41. Emonet SF, Garidou L, McGavern DB, de la Torre JC (2009) Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci U S A 106(9):3473–3478. doi:10.1073/pnas.0900088106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Popkin DL, Teijaro JR, Lee AM, Lewicki H, Emonet S, de la Torre JC, Oldstone M (2011) Expanded potential for recombinant trisegmented lymphocytic choriomeningitis viruses: protein production, antibody production, and in vivo assessment of biological function of genes of interest. J Virol 85(15):7928–7932. doi:10.1128/JVI.00486-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortiz-Riano E, Ngo N, Devito S, Eggink D, Munger J, Shaw ML, de la Torre JC, Martinez-Sobrido L (2014) Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor. J Virol 88(2):878–889. doi:10.1128/JVI.02275-13

    Article  PubMed  PubMed Central  Google Scholar 

  44. Salvato M, Borrow P, Shimomaye E, Oldstone MB (1991) Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J Virol 65(4):1863–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nisii C, Castilletti C, Raoul H, Hewson R, Brown D, Gopal R, Eickmann M, Gunther S, Mirazimi A, Koivula T, Feldmann H, Di Caro A, Capobianchi MR, Ippolito G (2013) Biosafety Level-4 laboratories in Europe: opportunities for public health, diagnostics, and research. PLoS Pathog 9(1):e1003105. doi:10.1371/journal.ppat.1003105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nogales A, Baker SF, Martinez-Sobrido L (2015) Replication-competent influenza A viruses expressing a red fluorescent protein. Virology 476:206–216. doi:10.1016/j.virol.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  47. Flick R, Hobom G (1999) Transient bicistronic vRNA segments for indirect selection of recombinant influenza viruses. Virology 262(1):93–103. doi:10.1006/viro.1999.9895

    Article  CAS  PubMed  Google Scholar 

  48. Vieira Machado A, Naffakh N, Gerbaud S, van der Werf S, Escriou N (2006) Recombinant influenza A viruses harboring optimized dicistronic NA segment with an extended native 5′ terminal sequence: induction of heterospecific B and T cell responses in mice. Virology 345(1):73–87. doi:10.1016/j.virol.2005.09.050

    Article  CAS  PubMed  Google Scholar 

  49. Marschalek A, Finke S, Schwemmle M, Mayer D, Heimrich B, Stitz L, Conzelmann KK (2009) Attenuation of rabies virus replication and virulence by picornavirus internal ribosome entry site elements. J Virol 83(4):1911–1919. doi:10.1128/JVI.02055-08

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Sastre A, Muster T, Barclay WS, Percy N, Palese P (1994) Use of a mammalian internal ribosomal entry site element for expression of a foreign protein by a transfectant influenza virus. J Virol 68(10):6254–6261

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Goto H, Muramoto Y, Noda T, Kawaoka Y (2013) The genome-packaging signal of the influenza A virus genome comprises a genome incorporation signal and a genome-bundling signal. J Virol 87(21):11316–11322. doi:10.1128/JVI.01301-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang Y, Hong Y, Parslow TG (2005) cis-Acting packaging signals in the influenza virus PB1, PB2, and PA genomic RNA segments. J Virol 79(16):10348–10355. doi:10.1128/JVI.79.16.10348-10355.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ngo N, Cubitt B, Iwasaki M, de la Torre JC (2015) Identification and mechanism of action of a novel small-molecule inhibitor of arenavirus multiplication. J Virol 89(21):10924–10933. doi:10.1128/JVI.01587-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meyer BJ, de la Torre JC, Southern PJ (2002) Arenaviruses: genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol 262:139–157

    CAS  PubMed  Google Scholar 

  55. Buchmeier MJ (2002) Arenaviruses: protein structure and function. Curr Top Microbiol Immunol 262:159–173

    CAS  PubMed  Google Scholar 

  56. Young PR, Howard CR (1983) Fine structure analysis of Pichinde virus nucleocapsids. J Gen Virol 64(Pt 4):833–842

    Article  PubMed  Google Scholar 

  57. Marsh GA, Rabadan R, Levine AJ, Palese P (2008) Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. J Virol 82(5):2295–2304. doi:10.1128/JVI.02267-07

    Article  CAS  PubMed  Google Scholar 

  58. Kohl A, Lowen AC, Leonard VH, Elliott RM (2006) Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. J Gen Virol 87(Pt 1):177–187. doi:10.1099/vir.0.81227-0

    Article  CAS  PubMed  Google Scholar 

  59. Hess RD, Weber F, Watson K, Schmitt S (2012) Regulatory, biosafety and safety challenges for novel cells as substrates for human vaccines. Vaccine 30(17):2715–2727. doi:10.1016/j.vaccine.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  60. Heix J, Grummt I (1995) Species specificity of transcription by RNA polymerase I. Curr Opin Genet Dev 5(5):652–656

    Article  CAS  PubMed  Google Scholar 

  61. Flatz L, Bergthaler A, de la Torre JC, Pinschewer DD (2006) Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc Natl Acad Sci U S A 103(12):4663–4668. doi:10.1073/pnas.0600652103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Current arenavirus research in LM-S laboratory is funded by the NIH grants R21 AI119775-01, R43 AI119775-01, and R21AI121550-01A1. Research in J.C.T. laboratory is supported by grants RO1 AI047140, RO1 AI077719, and RO1 AI079665.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Martínez-Sobrido or Juan Carlos de la Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Martínez-Sobrido, L., de la Torre, J.C. (2017). Development of Recombinant Arenavirus-Based Vaccines. In: Ferran, M., Skuse, G. (eds) Recombinant Virus Vaccines. Methods in Molecular Biology, vol 1581. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6869-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6869-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6867-1

  • Online ISBN: 978-1-4939-6869-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics