Skip to main content

Display of HIV-1 Envelope Protein on Lambda Phage Scaffold as a Vaccine Platform

  • Protocol
  • First Online:
Recombinant Virus Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1581))

Abstract

The generation of a strong antibody response to target antigens is a major goal for vaccine development. Here we describe the display of the human immunodeficiency virus (HIV) envelope spike protein (Env) on a virus-like scaffold provided by the lambda phage capsid. Phage vectors, in general, have advantages over mammalian virus vectors due to their genetic tractability, inexpensive production, suitability for scale-up, as well as their physical stability, making them an attractive vaccine platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burton DR (2006) Structural biology: images from the surface of HIV. Nature 441(7095):817–818

    Article  CAS  PubMed  Google Scholar 

  2. Pantophlet R, Burton DR (2006) GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24:739–769

    Article  CAS  PubMed  Google Scholar 

  3. Zolla-Pazner S (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 4(3):199–210

    Article  CAS  PubMed  Google Scholar 

  4. McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR (1984) Human hepatitis B vaccine from recombinant yeast. Nature 307(5947):178–180

    Article  CAS  PubMed  Google Scholar 

  5. Evans TG, Bonnez W, Rose RC, Koenig S, Demeter L, Suzich JA et al (2001) A Phase 1 study of a recombinant virus like particle vaccine against human papillomavirus type 11 in healthy adult volunteers. J Infect Dis 183(10):1485–1493

    Article  CAS  PubMed  Google Scholar 

  6. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A et al (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447):1757–1765

    Article  CAS  PubMed  Google Scholar 

  7. Villa LL, Costa RL, Petta CA, Andrade RP, Ault KA, Giuliano AR et al (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 6(5):271–278

    Article  PubMed  Google Scholar 

  8. Lee DH, Lee SH, Kim AR, Quan FS (2016) Virus-like nanparticle vaccine confers protection against Toxoplasma gondii. PLoS One. 11(8). doi:10.1371/journal.pone.0161231

  9. Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2(6):489–497

    Article  CAS  PubMed  Google Scholar 

  10. Fogelman I, Davey V, Ochs HD, Elashoff M, Feinberg MB, Mican J et al (2000) Evaluation of CD4+ T cell function In vivo in HIV-infected patients as measured by bacteriophage phiX174 immunization. J Infect Dis 182(2):435–441

    Article  CAS  PubMed  Google Scholar 

  11. Piersanti S, Cherubini G, Martina Y, Salone B, Avitabile D, Grosso F et al (2004) Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. J Mol Med 82(7):467–476

    Article  CAS  PubMed  Google Scholar 

  12. Yang F, Forrer P, Dauter Z, Conway JF, Cheng N, Cerritelli ME et al (2000) Novel fold and capsid- binding properties of the lambda-phage display platform protein gpD. Nat Struct Biol 7(3):230–237

    Article  CAS  PubMed  Google Scholar 

  13. Sternberg N, Hoess RH (1995) Display of peptides and proteins on the surface of bacteriophage lambda. Proc Natl Acad Sci 92(5):1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Domm W, Brewer M, Baker SF, Feng C, Martinez-Sobrido L, Treanor J, Dewhurst S (2014) Use of bacteriophage particles displaying influenza virus hemagglutnin for the detection of hemagglutination-inhibition antibodies. J Virol Methods 197:47–50 Vaccine 29(14):2637–2647

    Article  CAS  PubMed  Google Scholar 

  15. Mattiacio J, Walter S, Brewer M, Domm W, Friedman AE, Dewhurst S (2011) Dense display of HIV-1 envelope spikes on the lambda phage scaffold does not result in the generation of improved antibody respones to HIV-1 Env. Vaccine 29(14):2637–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H et al (2001) Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 276(28):26204–26210

    Article  CAS  PubMed  Google Scholar 

  17. Zanghi CN, Lankes HA, Bradel-Tretheway B, Wegman J, Dewhurst S (2005) A simple method for displaying recalcitrant proteins on the surface of bacteriophage lambda. Nucleic Acids Res 33(18):e160. doi:10.1093/nar/gni 158

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zanghi CN, Sapinoro R, Bradel-Tretheway B, Dewhurst S (2007) A tractable method for simultaneous modifications to the head and tail of bacteriophage lambda and its application to enhancing phage-mediated gene delivery. Nucleic Acids Res 35(8):e59. doi:10.1093/nar/gkm146

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sambrook J, Russell DW (2006) Purification of bacteriophage λ particles by isopycnic centrifucation through CsCl gradients. Cold Spring Harb Protoc. doi:10.1101/pdb.prot3968

    Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant R21A1074351 (S.D.), T32DE007202 (J.M.) and T32AI049815 (M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonelle L. Mattiacio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mattiacio, J.L., Brewer, M., Dewhurst, S. (2017). Display of HIV-1 Envelope Protein on Lambda Phage Scaffold as a Vaccine Platform. In: Ferran, M., Skuse, G. (eds) Recombinant Virus Vaccines. Methods in Molecular Biology, vol 1581. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6869-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6869-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6867-1

  • Online ISBN: 978-1-4939-6869-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics