Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA

  • Maria Chiara Giuffrida
  • Roberta D’Agata
  • Giuseppe SpotoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1580)


Droplet microfluidics combined with the isothermal circular strand displacement polymerization (ICSDP) represents a powerful new technique to detect both single-stranded DNA and microRNA sequences. The method here described helps in overcoming some drawbacks of the lately introduced droplet polymerase chain reaction (PCR) amplification when implemented in microfluidic devices. The method also allows the detection of nanoliter droplets of nucleic acids sequences solutions, with a particular attention to microRNA sequences that are detected at the picomolar level. The integration of the ICSDP amplification protocol in droplet microfluidic devices reduces the time of analysis and the amount of sample required. In addition, there is also the possibility to design parallel analyses to be integrated in portable devices.

Key words

Circular strand displacement polymerization Isothermal amplification Droplet microfluidics MicroRNA Nucleic acids amplification 



MIUR (PRIN 20093N774P) and Ministry of Health, Italy (n. 098/GR-2009-1596647), are acknowledged for partial financial support.


  1. 1.
    Schneider T, Kreutz J, Chiu DT (2013) The potential impact of droplet microfluidics in biology. Anal Chem 85:3476–3482CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Spoto G, Corradini R (2012) Detection of non-amplified genomic DNA. Springer, VerlagCrossRefGoogle Scholar
  3. 3.
    Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486CrossRefPubMedGoogle Scholar
  6. 6.
    Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11:1420–1430CrossRefPubMedGoogle Scholar
  7. 7.
    Zanoli LM, Spoto G (2013) Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors 3:18–43CrossRefPubMedGoogle Scholar
  8. 8.
    Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis 3:227–239CrossRefPubMedGoogle Scholar
  9. 9.
    Guo Q, Yang X, Wang K, Tan W, Li W, Tang H, Li H (2009) Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Res 37(3):e20CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, Spoto G (2010) Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens Bioelectron 25:2095–2100CrossRefPubMedGoogle Scholar
  11. 11.
    Giuffrida MC, Zanoli LM, D’Agata R, Finotti A, Gambari R, Spoto G (2015) Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Anal Bioanal Chem 407(6):1533–1543CrossRefPubMedGoogle Scholar
  12. 12.
    Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104CrossRefPubMedGoogle Scholar
  13. 13.
    Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113:6207–6233CrossRefPubMedGoogle Scholar
  14. 14.
    Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zampetaki A, Mayr M (2012) MicroRNAs in vascular and metabolic disease. Circ Res 110:508–522CrossRefPubMedGoogle Scholar
  16. 16.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tzimagiorgis G, Michailidou EZ, Kritis A, Markopoulos AK, Kouidou S (2011) Recovering circulating extracellular or cell-free RNA from bodily fluids. Cancer Epidemiol 35:580–589CrossRefPubMedGoogle Scholar
  18. 18.
    Yan L, Yan Y, Pei L, Wei W, Zhao J (2014) A G-quadruplex DNA-based, label-free and ultrasensitive strategy for microRNA detection. Sci Rep 4:7400CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Direct detection of point mutations in non-amplified human genomic DNA. Anal Chem 83:8711–8717CrossRefPubMedGoogle Scholar
  20. 20.
    D’Agata R, Spoto G (2013) Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 405:573–584CrossRefPubMedGoogle Scholar
  21. 21.
    Zanoli LM, D’Agata R, Spoto G (2012) Functionalized gold nanoparticles for the ultrasensitive DNA detection. Anal Bioanal Chem 402:1759–1771CrossRefPubMedGoogle Scholar
  22. 22.
    Spoto G, Minunni M (2012) Surface plasmon resonance imaging: what next? J Phys Chem Lett 3:2682–2691CrossRefPubMedGoogle Scholar
  23. 23.
    Grasso G, D’Agata R, Zanoli L, Spoto G (2009) Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments. Microchem J 93:82–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Maria Chiara Giuffrida
    • 1
  • Roberta D’Agata
    • 1
  • Giuseppe Spoto
    • 1
    • 2
    Email author
  1. 1.I.N.B.B. ConsortiumRomeItaly
  2. 2.Dipartimento di Scienze ChimicheUniversità di CataniaCataniaItaly

Personalised recommendations