MicroRNAs, Regulatory Networks, and Comorbidities: Decoding Complex Systems

  • Francesco RussoEmail author
  • Kirstine Belling
  • Anders Boeck Jensen
  • Flavia Scoyni
  • Søren Brunak
  • Marco Pellegrini
Part of the Methods in Molecular Biology book series (MIMB, volume 1580)


MicroRNAs (miRNAs) are small noncoding RNAs involved in the posttranscriptional regulation of messenger RNAs (mRNAs). Each miRNA targets a specific set of mRNAs. Upon binding the miRNA inhibits mRNA translation or facilitate mRNA degradation. miRNAs are frequently deregulated in several pathologies including cancer and cardiovascular diseases. Since miRNAs have a crucial role in fine-tuning the expression of their targets, they have been proposed as biomarkers of disease progression and prognostication.

In this chapter we discuss different approaches for computational predictions of miRNA targets based on sequence complementarity and integration of expression data. In the last section of the chapter we discuss new opportunities in the study of miRNA regulatory networks in the context of temporal disease progression and comorbidities.

Key words

microRNA Regulatory network Target prediction Comorbidities Systems biology Data integration 



Francesco Russo has been supported by a fellowship sponsored by Progetto Istituto Toscano Tumori-Grant 2012 Prot. A00GRT. Novo Nordisk Foundation (grant agreement NNF14CC0001).


  1. 1.
    ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816CrossRefGoogle Scholar
  2. 2.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488CrossRefPubMedGoogle Scholar
  3. 3.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  5. 5.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28:771–776CrossRefPubMedGoogle Scholar
  7. 7.
    Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104:9667–9672CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934CrossRefPubMedGoogle Scholar
  9. 9.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139CrossRefPubMedGoogle Scholar
  11. 11.
    Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hébert SS (2009) Putative role of MicroRNA-regulated pathways in comorbid neurological and cardiovascular disorders. Cardiovasc Psychiatr Neurol 2009:849, 519CrossRefGoogle Scholar
  13. 13.
    Hulsmans M, Sinnaeve P, Van der Schueren B, Mathieu C, Janssens S, Holvoet P (2012) Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. J Clin Endocrinol Metab 97:E1213–E1218CrossRefPubMedGoogle Scholar
  14. 14.
    Orlova IA, Alexander GM, Qureshi RA, Sacan A, Graziano A, Barrett JE, Schwartzman RJ, Ajit SK (2011) MicroRNA modulation in complex regional pain syndrome. J Transl Med 9:195CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, Hansen T, Søeby K, Bredkjær S, Juul A, Werge T, Jensen LJ, Brunak S (2011) Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput Biol 7:e1002141CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jensen AB, Moseley PL, Oprea TI, Ellesøe SG, Eriksson R, Schmock H, Jensen PB, Jensen LJ, Brunak S (2014) Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nat Commun 5:4022PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798CrossRefPubMedGoogle Scholar
  18. 18.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153CrossRefPubMedGoogle Scholar
  20. 20.
    Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284CrossRefPubMedGoogle Scholar
  22. 22.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMedGoogle Scholar
  24. 24.
    Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38:W352–W359CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C (2012) MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res 40:W13–W21CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang GT, Athanassiou C, Benos PV (2011) mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res 39:W416–W423CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huang JC, Morris QD, Frey BJ (2007) Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 14:550–563CrossRefPubMedGoogle Scholar
  28. 28.
    Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44:W135–W141CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Le TD, Zhang J, Liu L, Liu H, Li J (2015) miRLAB: an R based dry lab for exploring miRNA-mRNA regulatory relationships. PLoS One 10:e0145386CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Baglioni M, Russo F, Geraci F, Rizzo M, Rainaldi G, Pellegrini M (2015) A new method for discovering disease-specific MiRNA-target regulatory networks. PLoS One 10:e0122473CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486PubMedPubMedCentralGoogle Scholar
  32. 32.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rigoutsos I, Floratos A (1998) Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics 14:55–67CrossRefPubMedGoogle Scholar
  35. 35.
    Hofacker IL, Fontana W, Stadler P, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte f Chemie 125:167–188CrossRefGoogle Scholar
  36. 36.
    Altman N, Krzywinski M (2015) Points of Significance: Association, correlation and causation. Nat Methods 12:899–900CrossRefPubMedGoogle Scholar
  37. 37.
    Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247CrossRefPubMedGoogle Scholar
  38. 38.
    Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Fevgas A, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43:D153–D159CrossRefPubMedGoogle Scholar
  39. 39.
    Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110CrossRefPubMedGoogle Scholar
  40. 40.
    Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li X, Jiang W (2013) SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics 29:409–411CrossRefPubMedGoogle Scholar
  41. 41.
    Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N (2014) Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform 15:648–659CrossRefPubMedGoogle Scholar
  42. 42.
    Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–104CrossRefPubMedGoogle Scholar
  43. 43.
    Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11:R6CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97CrossRefPubMedGoogle Scholar
  45. 45.
    Dai E, Yu X, Zhang Y, Meng F, Wang S, Liu X, Liu D, Wang J, Li X, Jiang W (2014) EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database 2014, bau023.Google Scholar
  46. 46.
    Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14:1012–1017CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRefPubMedGoogle Scholar
  49. 49.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B 1:267–288Google Scholar
  50. 50.
    Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc Ser B 67:301–320CrossRefGoogle Scholar
  51. 51.
    Maathuis MH, Kalisch M, Bühlmann P (2009) Estimating high-dimensional intervention effects from observational data. Ann Stat 37:3133–3164CrossRefGoogle Scholar
  52. 52.
    Maathuis MH, Colombo D, Kalisch M, Bühlmann P (2010) Predicting causal effects in large-scale systems from observational data. Nat Methods 7:247–248CrossRefPubMedGoogle Scholar
  53. 53.
    Le TD, Liu L, Tsykin A, Goodall GJ, Liu B, Sun BY, Li J (2013) Inferring microRNA-mRNA causal regulatory relationships from expression data. Bioinformatics 29:765–771CrossRefPubMedGoogle Scholar
  54. 54.
    Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási AL (2015) Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347:1,257,601CrossRefGoogle Scholar
  55. 55.
    Blair DR, Lyttle CS, Mortensen JM, Bearden CF, Jensen AB, Khiabanian H, Melamed R, Rabadan R, Bernstam EV, Brunak S, Jensen LJ, Nicolae D, Shah NH, Grossman RL, Cox NJ, White KP, Rzhetsky A (2013) A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 155:70–80CrossRefPubMedGoogle Scholar
  56. 56.
    Hidalgo CA, Blumm N, Barabási AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5:e1000353CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Botla SK, Savant S, Jandaghi P, Bauer AS, Mücke O, Moskalev EA, Neoptolemos JP, Costello E, Greenhalf W, Scarpa A, Gaida MM, Buchler MW, Strobel O, Hackert T, Giese NA, Augustin HG, Hoheisel JD (2016) Early epigenetic down-regulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer Res 76:4149–4159CrossRefPubMedGoogle Scholar
  58. 58.
    Mees ST, Mardin WA, Sielker S, Willscher E, Senninger N, Schleicher C, Colombo-Benkmann M, Haier J (2009) Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol 16:2339–2350CrossRefPubMedGoogle Scholar
  59. 59.
    Russo F, Di Bella S, Nigita G, Macca V, Laganà A, Giugno R, Pulvirenti A, Ferro A (2012) miRandola: extracellular circulating microRNAs database. PLoS One 7:e47786CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Russo F, Di Bella S, Bonnici V, Laganà A, Rainaldi G, Pellegrini M, Pulvirenti A, Giugno R, Ferro A (2014) A knowledge base for the discovery of function, diagnostic potential and drug effects on cellular and extracellular miRNAs. BMC Genomics 15:S4CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244CrossRefPubMedGoogle Scholar
  62. 62.
    Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yuan Y, Ren X, Xie Z, Wang X (2016) A quantitative understanding of microRNA-mediated competing endogenous RNA regulation. Quantitat Biol 4:47CrossRefGoogle Scholar
  65. 65.
    Yuan Y, Liu B, Xie P, Zhang MQ, Li Y, Xie Z, Wang X (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci U S A 112(10):3158–3163CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Francesco Russo
    • 1
    Email author
  • Kirstine Belling
    • 1
  • Anders Boeck Jensen
    • 1
  • Flavia Scoyni
    • 2
  • Søren Brunak
    • 1
  • Marco Pellegrini
    • 3
  1. 1.Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenKøbenhavn NDenmark
  2. 2.Biotech Research & Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
  3. 3.Institute of Informatics and TelematicsNational Research Council (CNR)PisaItaly

Personalised recommendations