Skip to main content

MiRNA Quantitation with Microelectrode Sensors Enabled by Enzymeless Electrochemical Signal Amplification

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1580))

Abstract

Quantification of circulating microRNAs (miRNAs) is of great interest because of their potentials as disease biomarkers. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray are considered mainstream techniques for miRNA identification and quantitation. However, these techniques are challenged by the low levels and wide dynamic range (from aM to nM) of miRNAs in a physiological sample, as well as the difficulty in the implementation in point-of-care settings. Here, we describe a one-step label-free electrochemical sensing technique by assembling a triple-stem DNA-redox probe structure on a gold microelectrode and introducing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP) in the detection buffer solution to achieve ultrasensitive miRNAs detection with a detection limit of 0.1 fM.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113:6207–6233

    Article  CAS  PubMed  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  3. Cullen BR (2009) Viral and cellular messenger RNA targets of viral microRNAs. Nature 457:421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983

    Article  CAS  PubMed  Google Scholar 

  5. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469

    Article  CAS  PubMed  Google Scholar 

  6. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106:4402–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michel V, Yuan Z, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med 231:490–504

    CAS  Google Scholar 

  8. Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260

    Article  CAS  PubMed  Google Scholar 

  9. Lim LP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu CG, Calin GA, Meloon B, Gamllel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101:9740–9744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B (2009) Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 4:e6229

    Article  PubMed  PubMed Central  Google Scholar 

  13. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DSB (2011) Direct serum assay for MicroRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57:84–91

    Article  CAS  PubMed  Google Scholar 

  14. Zhi F, Cao X, Xie X, Wang B, Dong W, Gu W, Ling Y, Wang R, Yang Y, Liu Y (2013) Identification of circulating MicroRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS One 8:e56718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Li Z, Wang H, Wang Y, Jia H, Yan J (2011) Ultrasensitive quantification of mature microRNAs by real-time PCR based on ligation of a ribonucleotide-modified DNA probe. Chem Commun 47:9465–9467

    Article  CAS  Google Scholar 

  17. Gao ZQ, Yang ZC (2006) Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem 78:1470–1477

    Article  CAS  PubMed  Google Scholar 

  18. Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski MV (2013) Three-mode electrochemical sensing of ultralow MicroRNA levels. J Am Chem Soc 135:3027–3038

    Article  CAS  PubMed  Google Scholar 

  19. Labib M, Ghobadloo SM, Khan N, Kolpashchikov DM, Berezovski MV (2013) Four-way junction formation promoting ultrasensitive electrochemical detection of MicroRNA. Anal Chem 85:9422–9427

    Article  CAS  PubMed  Google Scholar 

  20. Labib M, Khan N, Berezovski MV (2015) Protein electrocatalysis for direct sensing of circulating MicroRNAs. Anal Chem 87:1395–1403

    Article  CAS  PubMed  Google Scholar 

  21. Wang T, Viennois E, Merlin D, Wang G (2015) Microelectrode miRNA sensors enabled by enzyme less electrochemical signal amplification. Anal Chem 87:8173–8180

    Article  CAS  PubMed  Google Scholar 

  22. White RJ, Plaxco KW (2010) Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal Chem 82:73–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Department of Veterans Affairs (Merit Award: BX002526 to D.M.) and the National Institute of Health of Diabetes and Digestive and Kidney by the Grants RO1-DK-071594 and RO1-DK-064711 (to D.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, T., Wang, G., Merlin, D., Viennois, E. (2017). MiRNA Quantitation with Microelectrode Sensors Enabled by Enzymeless Electrochemical Signal Amplification. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 1580. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6866-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6866-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6864-0

  • Online ISBN: 978-1-4939-6866-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics