Advertisement

MiRNA Quantitation with Microelectrode Sensors Enabled by Enzymeless Electrochemical Signal Amplification

  • Tanyu WangEmail author
  • Gangli Wang
  • Didier Merlin
  • Emilie Viennois
Part of the Methods in Molecular Biology book series (MIMB, volume 1580)

Abstract

Quantification of circulating microRNAs (miRNAs) is of great interest because of their potentials as disease biomarkers. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray are considered mainstream techniques for miRNA identification and quantitation. However, these techniques are challenged by the low levels and wide dynamic range (from aM to nM) of miRNAs in a physiological sample, as well as the difficulty in the implementation in point-of-care settings. Here, we describe a one-step label-free electrochemical sensing technique by assembling a triple-stem DNA-redox probe structure on a gold microelectrode and introducing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP) in the detection buffer solution to achieve ultrasensitive miRNAs detection with a detection limit of 0.1 fM.

Key words

miRNAs detection Electrochemical sensor Gold microelectrode Nonenzymatic amplification One-step detection Label-free sensor Folding-based sensor 

Notes

Acknowledgment

This work was supported by grants from the Department of Veterans Affairs (Merit Award: BX002526 to D.M.) and the National Institute of Health of Diabetes and Digestive and Kidney by the Grants RO1-DK-071594 and RO1-DK-064711 (to D.M.).

References

  1. 1.
    Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113:6207–6233CrossRefPubMedGoogle Scholar
  2. 2.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  3. 3.
    Cullen BR (2009) Viral and cellular messenger RNA targets of viral microRNAs. Nature 457:421–425CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983CrossRefPubMedGoogle Scholar
  5. 5.
    Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469CrossRefPubMedGoogle Scholar
  6. 6.
    Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106:4402–4407CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Michel V, Yuan Z, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med 231:490–504Google Scholar
  8. 8.
    Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260CrossRefPubMedGoogle Scholar
  9. 9.
    Lim LP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu CG, Calin GA, Meloon B, Gamllel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101:9740–9744CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B (2009) Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 4:e6229CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DSB (2011) Direct serum assay for MicroRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57:84–91CrossRefPubMedGoogle Scholar
  14. 14.
    Zhi F, Cao X, Xie X, Wang B, Dong W, Gu W, Ling Y, Wang R, Yang Y, Liu Y (2013) Identification of circulating MicroRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS One 8:e56718CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang J, Li Z, Wang H, Wang Y, Jia H, Yan J (2011) Ultrasensitive quantification of mature microRNAs by real-time PCR based on ligation of a ribonucleotide-modified DNA probe. Chem Commun 47:9465–9467CrossRefGoogle Scholar
  17. 17.
    Gao ZQ, Yang ZC (2006) Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem 78:1470–1477CrossRefPubMedGoogle Scholar
  18. 18.
    Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski MV (2013) Three-mode electrochemical sensing of ultralow MicroRNA levels. J Am Chem Soc 135:3027–3038CrossRefPubMedGoogle Scholar
  19. 19.
    Labib M, Ghobadloo SM, Khan N, Kolpashchikov DM, Berezovski MV (2013) Four-way junction formation promoting ultrasensitive electrochemical detection of MicroRNA. Anal Chem 85:9422–9427CrossRefPubMedGoogle Scholar
  20. 20.
    Labib M, Khan N, Berezovski MV (2015) Protein electrocatalysis for direct sensing of circulating MicroRNAs. Anal Chem 87:1395–1403CrossRefPubMedGoogle Scholar
  21. 21.
    Wang T, Viennois E, Merlin D, Wang G (2015) Microelectrode miRNA sensors enabled by enzyme less electrochemical signal amplification. Anal Chem 87:8173–8180CrossRefPubMedGoogle Scholar
  22. 22.
    White RJ, Plaxco KW (2010) Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal Chem 82:73–76CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Tanyu Wang
    • 1
    Email author
  • Gangli Wang
    • 1
  • Didier Merlin
    • 1
  • Emilie Viennois
    • 1
  1. 1.Department of ChemistryGeorgia State UniversityAtlantaUSA

Personalised recommendations