Prediction of miRNA–mRNA Interactions Using miRGate

  • Eduardo Andrés-LeónEmail author
  • Gonzalo Gómez-López
  • David G. Pisano
Part of the Methods in Molecular Biology book series (MIMB, volume 1580)


miRGate ( is a freely available database that contains predicted and experimentally validated microRNA–messenger RNA (miRNA–mRNA) target pairs. This resource includes novel predictions from five well-established algorithms, but recalculated from a common and comprehensive sequence dataset. It includes all 3′-UTR sequences of all known genes of the three more widely employed genomes (human, mouse, and rat), and all annotated miRNA sequences from those genomes. Besides, it also contains predictions for all genes in human targeted by miRNA viruses such as Epstein-Barr and Kaposi sarcoma-associated herpes virus.

The approach intends to circumvent one of the main drawbacks in this area, as diverse sequences and gene database versions cause poor overlap among different target prediction methods even with experimentally confirmed targets. As a result, miRGate predictions have been successfully validated using functional assays in several laboratories.

This chapter describes how a user can access target information via miRGate’s web interface. It also shows how automatically access the database through the programmatic interface based on representational state transfer services (REST), using the application programming interface (API) available at

Key words

MicroRNA Prediction 3′-UTR Validated API Target site 



The authors would like to thank to Rocio Nuñez for critical reading of the manuscript.


  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  2. 2.
    Shukla GC, Singh J, Barik S (2011) MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol 3:83–92PubMedPubMedCentralGoogle Scholar
  3. 3.
    Morozova N et al (2012) Kinetic signatures of microRNA modes of action. RNA 18:1635–1655CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  5. 5.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471CrossRefPubMedGoogle Scholar
  6. 6.
    Place RF et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105:14879–14884CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lim LP et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773CrossRefPubMedGoogle Scholar
  9. 9.
    Wu S et al (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308CrossRefPubMedGoogle Scholar
  10. 10.
    Vinther J et al (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Langenberger D et al (2010) Identification and classification of small RNAs in transcriptome sequence data. Pac Symp Biocomput:80–87Google Scholar
  12. 12.
    Huttenhofer A, Vogel J (2006) Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34:635–646CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Oulas A et al (2015) Prediction of miRNA targets. Methods Mol Biol 1269:207–229CrossRefPubMedGoogle Scholar
  14. 14.
    Min H, Yoon S (2010) Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 42:233–244CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Farh KK et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821CrossRefPubMedGoogle Scholar
  16. 16.
    Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Betel D et al (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMedGoogle Scholar
  19. 19.
    Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284CrossRefPubMedGoogle Scholar
  20. 20.
    Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMedGoogle Scholar
  21. 21.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vergoulis T et al (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229CrossRefPubMedGoogle Scholar
  23. 23.
    Hsu SD et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85CrossRefPubMedGoogle Scholar
  24. 24.
    Nam S et al (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37:W356–W362CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bisognin A et al (2012) MAGIA(2): from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res 40:W13–W21CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ritchie W, Flamant S, Rasko JE (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6:397–398CrossRefPubMedGoogle Scholar
  27. 27.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefPubMedGoogle Scholar
  28. 28.
    Flicek P et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755CrossRefPubMedGoogle Scholar
  29. 29.
    Harrow, J (2015) Human and Vertebrate Analysis and Annotation (HAVANA)Google Scholar
  30. 30.
    Poliseno L et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gonzalez-Perez A, Lopez-Bigas N (2011) Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet 88:440–449CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Xiao F et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110CrossRefPubMedGoogle Scholar
  33. 33.
    Wang D et al (2014) OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics 30:2237–2238CrossRefPubMedGoogle Scholar
  34. 34.
    Andres-Leon, E., et al., miRGate: a curated database of human, mouse and rat miRNA-mRNA targets. Database 2015, bav035.Google Scholar
  35. 35.
    Di Lisio L et al (2010) Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia 24:1335–1342CrossRefPubMedGoogle Scholar
  36. 36.
    Bueno MJ et al (2011) Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood 117:6255–6266CrossRefPubMedGoogle Scholar
  37. 37.
    Fish, S., (2015) XML::LibXML 2.0122 Parser libraryGoogle Scholar
  38. 38.
    Harrow J et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Di Lisio L et al (2012) MicroRNA signatures in B-cell lymphomas. Blood Cancer J 2:e57CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Martin-Perez D et al (2012) Epstein-Barr virus microRNAs repress BCL6 expression in diffuse large B-cell lymphoma. Leukemia 26:180–183CrossRefPubMedGoogle Scholar
  41. 41.
    Ambrosio MR et al (2014) The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer 9:12CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tanic M et al (2012) Integration of BRCA1-mediated miRNA and mRNA profiles reveals microRNA regulation of TRAF2 and NFkappaB pathway. Breast Cancer Res Treat 134:41–51CrossRefPubMedGoogle Scholar
  43. 43.
    Muller S et al (2014) APADB: a database for alternative polyadenylation and microRNA regulation events. Database 2014 bau076Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Eduardo Andrés-León
    • 1
    Email author
  • Gonzalo Gómez-López
    • 2
  • David G. Pisano
    • 2
  1. 1.Bioinformatics UnitInstituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS GranadaGranadaSpain
  2. 2.Bioinformatics Unit (UBio), Structural Biology and Biocomputing ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain

Personalised recommendations