An Assessment of the Next Generation of Animal miRNA Target Prediction Algorithms

  • Thomas Bradley
  • Simon MoxonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1580)


The advent of genome-wide next-generation sequencing technologies has revolutionized the genomic and transcriptomic fields. New technologies also present an opportunity for greater discovery and understanding of post-transcriptional processes, in particular, translational inhibition of transcripts by miRBP (microRNA-RNA binding protein) complexes. Not only have novel methodologies been developed for the direct sequencing of RBP-bound RNA, but a new class of miRNA (microRNA) target prediction algorithms trained on this data has emerged. In this article, we will explore and evaluate the next generation of animal miRNA target prediction algorithms, their relationship to more traditional prediction methods, and the implications of such methodologies for the future of miRNA target prediction and miRNA research as a whole.

Key words

miRNA Target prediction Bioinformatics 


  1. 1.
    Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460(7254):479–486PubMedPubMedCentralGoogle Scholar
  4. 4.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, Gottwein E, Rajewsky N (2014) Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54(6):1042–1054CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ, Nishiuchi E, Rice CM, Darnell RB (2015) miRNA-target chimeras reveal miRNA 3 [prime]-end pairing as a major determinant of Argonaute target specificity. Nat Commun 6 Google Scholar
  8. 8.
    Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488CrossRefPubMedGoogle Scholar
  10. 10.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  11. 11.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862CrossRefPubMedGoogle Scholar
  12. 12.
    Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2004) MicroRNA targets in Drosophila. Genome Biol 5(1):R1–R1CrossRefGoogle Scholar
  15. 15.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA. org resource: targets and expression. Nucleic Acids Res 36(suppl 1):D149–D153PubMedGoogle Scholar
  17. 17.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18(10):1139–1146CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Khorshid M, Hausser J, Zavolan M, van Nimwegen E (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10(3):253–255CrossRefPubMedGoogle Scholar
  21. 21.
    Gumienny R, Zavolan M (2015) Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res 43(3):1380–1391CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28(6):771–776CrossRefPubMedGoogle Scholar
  23. 23.
    Wang X (2016) Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-Ligation studies. Bioinformatics 32(9):1316–1322CrossRefPubMedGoogle Scholar
  24. 24.
    Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Fevgas A (2015) DIANA-TarBase v7. 0: indexing more than half a million experimentally supported miRNA: mRNA interactions. Nucleic Acids Res 43(D1):D153–D159CrossRefPubMedGoogle Scholar
  25. 25.
    Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39(suppl 1):D202–D209CrossRefPubMedGoogle Scholar
  26. 26.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH (2013) starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689CrossRefPubMedGoogle Scholar
  28. 28.
    Wang T, Xie Y, Xiao G (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol 15(1):1CrossRefGoogle Scholar
  29. 29.
    Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217CrossRefPubMedGoogle Scholar
  30. 30.
    Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, Leslie CS, Rudensky AY (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48(5):760–770CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Seok H, Ham J, Jang ES, Chi SW (2016) MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cells 39(5):375–381CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336(6078):233–237CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X (2013) Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 21(2):368–379CrossRefPubMedGoogle Scholar
  36. 36.
    Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15(12):2147–2160CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16(4):673–695CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, Harel-Bellan A (2012) Kinetic signatures of microRNA modes of action. RNA 18(9):1635–1655CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Forsyth R (1988) Machine learning: Principles and techniques. Chapman & Hall Ltd., New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.Earlham InstituteNorwichUK

Personalised recommendations