Predicting Functional MicroRNA-mRNA Interactions

  • Zixing Wang
  • Yin LiuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1580)


MicroRNAs (miRNAs) are small RNA molecules that play key regulatory roles in general biological processes and disease pathogenesis. These small RNA molecules interact with their target mRNAs to induce mRNA degradation and/or inhibit the translation of mRNAs into proteins. Therefore, identifying miRNA targets is an essential step to fully understand the regulatory effects of miRNAs. Here, we describe a regularized regression approach that integrates the sequence information with the miRNA and mRNA expression profiles for detecting miRNA targets. This method takes into account the full spectrum of gene sequence features of miRNA targets, including the thermodynamic stability, the accessibility energy, and the context features of the target sites,. Given these sequence features for each putative miRNA-mRNA interaction and their expression values, this model is able to quantify the down-regulation effect of each miRNA on its targets while simultaneously estimating the contribution of each sequence feature for predicting functional miRNA-mRNA interactions.

Key words

MiRNA target identification miRNA and mRNA expression profiles Regularized regression Sequence features Context score Thermodynamic stability 



This work is supported in part by NIH grant R01 LM010022 and the seed grant from the University of Texas Health Science Center at Houston.


  1. 1.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  3. 3.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379CrossRefPubMedGoogle Scholar
  4. 4.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110CrossRefPubMedGoogle Scholar
  5. 5.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157CrossRefPubMedGoogle Scholar
  7. 7.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63CrossRefPubMedGoogle Scholar
  9. 9.
    Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMedGoogle Scholar
  11. 11.
    Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153CrossRefPubMedGoogle Scholar
  13. 13.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu W, San Lucas A, Wang Z, Liu Y (2014) identifying microRNA targets in different gene regions. BMC Bioinformatics 15:11CrossRefGoogle Scholar
  15. 15.
    Xu W, Wang Z, Liu Y (2014) The characterization of microRNA-mediated gene regulation as impacted by both target site location and seed match type. PLoS One 9:e108260CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284CrossRefPubMedGoogle Scholar
  17. 17.
    Huang JC, Morris QD, Frey BJ (2007) Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 14:550–563CrossRefPubMedGoogle Scholar
  18. 18.
    Muniategui A, Nogales-Cadenas R, Vazquez M, Aranguren XL, Agirre X, Luttun A et al (2012) Quantification of miRNA-mRNA interactions. PLoS One 7:e30766CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lu Y, Zhou Y, Qu W, Deng M, Zhang C (2011) A lasso regression model for the construction of microRNA-target regulatory networks. Bioinformatics 27:2406–2413CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Z, Xu W, Liu Y (2015) Integrating full spectrum of sequence features into predicting functional microRNA-mRNA interactions. Bioinformatics 31:3529–3536CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85CrossRefPubMedGoogle Scholar
  22. 22.
    Gruber AR, Bernhart SH, Lorenz R (2015) The ViennaRNA web services. Methods Mol Biol 1269:307–326CrossRefPubMedGoogle Scholar
  23. 23.
    Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cao S, Qin H, Deng HW, Wang YP (2014) A Unified sparse representation for sequence variant identification for complex traits. Genet Epidemiol 38:671–679CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang Z, Xu W, San Lucas FA, Liu Y (2013) Incorporating prior knowledge into gene network study. Bioinformatics 29:2633–2640CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21:3940–3941CrossRefPubMedGoogle Scholar
  27. 27.
    Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98:15149–15154CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhuang X, Li Z, Lin H, Gu L, Lin Q, Lu Z et al (2015) Integrated miRNA and mRNA expression profiling to identify mRNA targets of dysregulated miRNAs in non-obstructive azoospermia. Sci Rep 5:7922CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.University of Texas M.D. Anderson Cancer Center77455 Fannin Street, HoustonUSA
  2. 2.Department of Neurobiology and AnatomyUniversity of Texas Health Science Center at HoustonHoustonUSA
  3. 3.University of Texas Graduate School of Biomedical ScienceHoustonUSA

Personalised recommendations