Skip to main content

Bioinformatics Analysis of the Receptor-Like Kinase (RLK) Superfamily

  • Protocol
  • First Online:
Plant Pattern Recognition Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1578))

Abstract

Receptor-like kinases (RLKs) play key roles during development and in responses to the environment. In plant immunity, some members of RLKs function as pattern recognition receptors (PRRs), which, upon recognition of pathogen-associated molecular patterns (PAMP), are recruited into active complexes to induce pathogen-triggered immunity (PTI). In this chapter, we describe the bioinformatics tools and procedures for the identification and phylogenetic classification of RLKs from different plant species as a framework for understanding RLK function in signal transduction and immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakamoto T, Deguchi M, Brustolini OJ, Santos AA, Silva FF, Fontes EP (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shiu SH, Karlowski SM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trdá L, Boutrot F, Claverie J, Brulé D, Dorey S, Poinssot B (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6:219

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tiwari AK, Srivastava R (2014) A survey of computational intelligence techniques in protein function prediction. Int J Proteomics 2014:845479

    Article  PubMed  PubMed Central  Google Scholar 

  6. Han L, Cui J, Lin H, Ji Z, Cao Z, Li Y, Chen Y (2006) Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics 6:4023–4037

    Article  CAS  PubMed  Google Scholar 

  7. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. doi:10.1093/nar/gkv1344

    Google Scholar 

  8. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  12. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  14. Durand D, Halldorsson BV, Vernot B (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13:320–335

    Article  CAS  PubMed  Google Scholar 

  15. Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102:10557–10562

    Article  PubMed  PubMed Central  Google Scholar 

  16. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  17. Thompson JD, Linard B, Lecompte O, Poch O (2011) A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 6:e18093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institute of Science and Technology in Plant-Pest Interactions, CNPq grants 573600/2008-2 and 447578/2014-6 and Fapemig grants APQ-00070-09 and CBB-APQ-01491-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth P. B. Fontes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Brustolini, O.J.B., Silva, J.C.F., Sakamoto, T., Fontes, E.P.B. (2017). Bioinformatics Analysis of the Receptor-Like Kinase (RLK) Superfamily. In: Shan, L., He, P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, vol 1578. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6859-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6859-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6858-9

  • Online ISBN: 978-1-4939-6859-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics