Bioinformatics Analysis of the Receptor-Like Kinase (RLK) Superfamily

  • Otávio J. B. Brustolini
  • José Cleydson F. Silva
  • Tetsu Sakamoto
  • Elizabeth P. B. FontesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1578)


Receptor-like kinases (RLKs) play key roles during development and in responses to the environment. In plant immunity, some members of RLKs function as pattern recognition receptors (PRRs), which, upon recognition of pathogen-associated molecular patterns (PAMP), are recruited into active complexes to induce pathogen-triggered immunity (PTI). In this chapter, we describe the bioinformatics tools and procedures for the identification and phylogenetic classification of RLKs from different plant species as a framework for understanding RLK function in signal transduction and immunity.

Key words

Receptor-like kinase (RLK) Leucine-rich repeat (LRR) Ectodomain Serine/threonine kinase domain Pattern recognition receptors (PRR) 



This work was supported by the National Institute of Science and Technology in Plant-Pest Interactions, CNPq grants 573600/2008-2 and 447578/2014-6 and Fapemig grants APQ-00070-09 and CBB-APQ-01491-14.


  1. 1.
    Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sakamoto T, Deguchi M, Brustolini OJ, Santos AA, Silva FF, Fontes EP (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12:229CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shiu SH, Karlowski SM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Trdá L, Boutrot F, Claverie J, Brulé D, Dorey S, Poinssot B (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6:219CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tiwari AK, Srivastava R (2014) A survey of computational intelligence techniques in protein function prediction. Int J Proteomics 2014:845479CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Han L, Cui J, Lin H, Ji Z, Cao Z, Li Y, Chen Y (2006) Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics 6:4023–4037CrossRefPubMedGoogle Scholar
  7. 7.
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. doi: 10.1093/nar/gkv1344 Google Scholar
  8. 8.
    Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186CrossRefPubMedGoogle Scholar
  9. 9.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  10. 10.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Durand D, Halldorsson BV, Vernot B (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13:320–335CrossRefPubMedGoogle Scholar
  15. 15.
    Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102:10557–10562CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217CrossRefPubMedGoogle Scholar
  17. 17.
    Thompson JD, Linard B, Lecompte O, Poch O (2011) A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 6:e18093CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Otávio J. B. Brustolini
    • 1
  • José Cleydson F. Silva
    • 1
    • 2
  • Tetsu Sakamoto
    • 3
  • Elizabeth P. B. Fontes
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyNational Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de ViçosaViçosaBrazil
  2. 2.Department of InformaticsUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Department of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations