Advertisement

Methods of Isolation and Characterization of Oligogalacturonide Elicitors

  • Manuel Benedetti
  • Benedetta Mattei
  • Daniela Pontiggia
  • Gianni Salvi
  • Daniel Valentin Savatin
  • Simone FerrariEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1578)

Abstract

Oligogalacturonides (OGs) are pectic fragments derived from the partial degradation of homogalacturonan in the plant cell wall and able to elicit plant defence responses. Recent methodological advances in the isolation of OGs from plant tissues and their characterization have confirmed their role as bona fide plant Damage-Associated Molecular Patterns. Here, we describe the methods for the isolation of OGs from Arabidopsis leaf tissues and for the characterization of OG structure and biological activity.

Key words

Oligogalacturonides Damage-associated molecular patterns Innate immunity Pectin Elicitors 

Notes

Acknowledgment

This work was supported by ERA-Net (grant ERA-CAPS 2014 “SIPIS—DECODING LIGAND-RECEPTOR specificities of LysM-Proteins IN PLANT IMMUNITY AND SYMBIOSIS) and by “Sapienza Università di Roma (grant “Ricerche UNIVERSITARIE” 2015).

References

  1. 1.
    Hahn MG, Darvill AG, Albersheim P (1981) Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68:1161–1169CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cervone F, De Lorenzo G, Salvi G, Bergmann C, Hahn MG, Ito Y, Darvill A, Albersheim P (1989) Release of phytoalexin elicitor-active oligogalacturonides by microbial pectic enzymes. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions, NATO ASI Series, vol H36. Springer Verlag, Heidelberg, FRG, pp 85–89CrossRefGoogle Scholar
  3. 3.
    Davis KR, Darvill AG, Albersheim P, Dell A (1986) Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol 80:568–577CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Broekaert WF, Pneumas WJ (1988) Pectic polysaccharides elicit chitinase accumulation in tobacco. Physiol Plant 74:740–744CrossRefGoogle Scholar
  5. 5.
    Davis KR, Hahlbrock K (1987) Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol 85:1286–1290CrossRefGoogle Scholar
  6. 6.
    Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1385CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S (2008) The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 148:1695–1706CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S (2012) Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 35:1483–1499CrossRefPubMedGoogle Scholar
  9. 9.
    Cervone F, Hahn MG, De Lorenzo G, Darvill A, Albersheim P (1989) Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90:542–548CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49. doi: 10.3389/fpls.2013.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Spiro MD, Kates KA, Koller AL, O'Neill MA, Albersheim P, Darvill AG (1993) Purification and characterization of biologically active 1,4-linked α-D-oligogalacturonides after partial digestion of polygalacturonic acid with endopolygalacturonase. Carbohydr Res 247:9–20CrossRefGoogle Scholar
  12. 12.
    Hahn MG, Cheong J-J, Alba R, Enkerli J, Cote F (1993) Oligosaccharide elicitors: structures and recognition. In: Mechanisms of plant defense responses. Kluwer Academic Publishers (Dordrecht. The Netherlands), pp 99–116Google Scholar
  13. 13.
    Hotchkiss AT Jr, Hicks KB (1990) Analysis of oligogalacturonic acids with 50 or fewer residues by high-performance anion-exchange chromatography and pulsed amperometric detection. Anal Biochem 184(2):200–206CrossRefPubMedGoogle Scholar
  14. 14.
    Pontiggia D, Ciarcianelli J, Salvi G, Cervone F, De Lorenzo G, Mattei B (2015) Sensitive detection and measurement of oligogalacturonides in Arabidopsis. Front Plant Sci 6:258CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G (2015) Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci USA 112:5533–5538CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Korner R, Limberg G, Mikkelsen JD, Roepstorff P (1998) Characterization of enzymatic pectin digests by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 33:836–842CrossRefPubMedGoogle Scholar
  17. 17.
    Remoroza C, Cord-Landwehr S, Leijdekkers AGM, Moerschbacher BM, Schols HA, Gruppen H (2012) Combined HILIC-ELSD/ESI-MS n enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydr Polym 90:41–48CrossRefPubMedGoogle Scholar
  18. 18.
    Westphal Y, Schols HA, Voragen AGJ, Gruppen H (2010) Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis. J Chromatogr A 1217:689–695CrossRefPubMedGoogle Scholar
  19. 19.
    Kester HCM, Visser J (1990) Purification and characterization of polygalacturonases produced by the hyphal fungus Aspergillus Niger. Biotechnol Appl Biochem 12:150–160PubMedGoogle Scholar
  20. 20.
    Mathieu Y, Kurkdijan A, Xia H, Guern J, Koller A, Spiro M, O'Neill M, Albersheim P, Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1:333–343Google Scholar
  21. 21.
    Mathieu Y, Guern J, Spiro MD, O'Neill MA, Kates K, Darvill AG, Albersheim P (1998) The transient nature of the oligogalacturonide-induced ion fluxes of tobacco cells is not correlated with fragmentation of the oligogalacturonides. Plant J 16:305–311CrossRefGoogle Scholar
  22. 22.
    Thain JF, Doherty HM, Bowles DJ, Wildon DC (1990) Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells. Plant Cell Environ 13:569–574CrossRefGoogle Scholar
  23. 23.
    Messiaen J, Read ND, Van Cutsem P, Trewavas AJ (1993) Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts. J Cell Sci 104:365–371Google Scholar
  24. 24.
    Moscatiello R, Mariani P, Sanders D, Maathuis FJM (2006) Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. J Exp Bot 57:2847–2865CrossRefPubMedGoogle Scholar
  25. 25.
    Savatin DV, Gigli BN, Marti L, Fabbri C, Cervone F, De Lorenzo G (2014) The Arabidopsis NPK1-related protein kinases ANPs are required for elicitor-induced oxidative burst and immunity. Plant Physiol 165:1188–1202CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gigli BN, Gravino M, Savatin DV (2015) Luminol-based assay for detection of immunity elicitor-induced hydrogen peroxide production in Arabidopsis thaliana leaves. Bio-protocol 5(24):e1685http://www.bio-protocol.org/e1685
  27. 27.
    Legendre L, Rueter S, Heinstein PF, Low PS (1993) Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol 102:233–240CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Binet MN, Bourque S, Lebrun-Garcia A, Chiltz A, Pugin A (1998) Comparison of the effects of cryptogein and oligogalacturonides on tobacco cells and evidence of different form of desensitization induced by these elicitors. Plant Sci 137:33–41CrossRefGoogle Scholar
  29. 29.
    Stennis MJ, Chandra S, Ryan CA, Low PS (1998) Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiol 117:1031–1036CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol 157:804–814CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gravino M, Savatin DV, Macone A, De Lorenzo G (2015) Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. Plant J 84:1073–1086CrossRefPubMedGoogle Scholar
  32. 32.
    Farmer EE, Moloshok TD, Saxton MJ, Ryan CA (1991) Oligosaccharide signaling in plants: specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem 266:3140–3145Google Scholar
  33. 33.
    Mattei B, Spinelli F, Pontiggia D, De Lorenzo G (2016) Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. Front Plant Sci 7:1107. doi: 10.3389/fpls.2016.01107Google Scholar
  34. 34.
    Baldwin EA, Pressey R (1988) Tomato polygalacturonase elicits ethylene production in tomato fruit. J Am Soc Hort Sci 113:92–95Google Scholar
  35. 35.
    Baldwin EA, Biggs RH (1988) Cell-wall lysing enzymes and products of cell-wall digestion elicit ethylene in citrus. Physiol Plant 73:58–64CrossRefGoogle Scholar
  36. 36.
    Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Savatin DV, Ferrari S, Sicilia F, De Lorenzo G (2011) Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis. Plant Physiol 157:1163–1174CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Savatin DV, Gigli BN, Gravino M, Fabbri C, Pontiggia D, Mattei B (2015) Camalexin quantification in Arabidopsis thaliana leaves infected with Botrytis cinerea. Bio-protocol 5(2):e1379 http://www.bio-protocol.org/e1379
  39. 39.
    Aziz A, Heyraud A, Lambert B (2004) Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta 218:767–774CrossRefPubMedGoogle Scholar
  40. 40.
    Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Marfà V, Gollin DJ, Eberhard S, Mohnen D, Darvill A, Albersheim P (1991) Oligogalac-turonides are able to induce flowers to form on tobacco explants. Plant J 1:217–225Google Scholar
  42. 42.
    Branca C, De Lorenzo G, Cervone F (1988) Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments. Physiol Plant 72:499–504CrossRefGoogle Scholar
  43. 43.
    Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder Taylor AT, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Brecht JK, Huber DJ (1988) Products released from enzymically active cell wall stimulate ethylene production and ripening in preclimacteric tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol 88:1037–1041CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Manuel Benedetti
    • 1
  • Benedetta Mattei
    • 1
  • Daniela Pontiggia
    • 1
  • Gianni Salvi
    • 1
  • Daniel Valentin Savatin
    • 1
  • Simone Ferrari
    • 1
    Email author
  1. 1.Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly

Personalised recommendations