Skip to main content

Methods of Isolation and Characterization of Oligogalacturonide Elicitors

  • Protocol
  • First Online:
Plant Pattern Recognition Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1578))

Abstract

Oligogalacturonides (OGs) are pectic fragments derived from the partial degradation of homogalacturonan in the plant cell wall and able to elicit plant defence responses. Recent methodological advances in the isolation of OGs from plant tissues and their characterization have confirmed their role as bona fide plant Damage-Associated Molecular Patterns. Here, we describe the methods for the isolation of OGs from Arabidopsis leaf tissues and for the characterization of OG structure and biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hahn MG, Darvill AG, Albersheim P (1981) Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68:1161–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cervone F, De Lorenzo G, Salvi G, Bergmann C, Hahn MG, Ito Y, Darvill A, Albersheim P (1989) Release of phytoalexin elicitor-active oligogalacturonides by microbial pectic enzymes. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions, NATO ASI Series, vol H36. Springer Verlag, Heidelberg, FRG, pp 85–89

    Chapter  Google Scholar 

  3. Davis KR, Darvill AG, Albersheim P, Dell A (1986) Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol 80:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Broekaert WF, Pneumas WJ (1988) Pectic polysaccharides elicit chitinase accumulation in tobacco. Physiol Plant 74:740–744

    Article  CAS  Google Scholar 

  5. Davis KR, Hahlbrock K (1987) Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol 85:1286–1290

    Article  Google Scholar 

  6. Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S (2008) The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 148:1695–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S (2012) Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 35:1483–1499

    Article  CAS  PubMed  Google Scholar 

  9. Cervone F, Hahn MG, De Lorenzo G, Darvill A, Albersheim P (1989) Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90:542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49. doi:10.3389/fpls.2013.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spiro MD, Kates KA, Koller AL, O'Neill MA, Albersheim P, Darvill AG (1993) Purification and characterization of biologically active 1,4-linked α-D-oligogalacturonides after partial digestion of polygalacturonic acid with endopolygalacturonase. Carbohydr Res 247:9–20

    Article  CAS  Google Scholar 

  12. Hahn MG, Cheong J-J, Alba R, Enkerli J, Cote F (1993) Oligosaccharide elicitors: structures and recognition. In: Mechanisms of plant defense responses. Kluwer Academic Publishers (Dordrecht. The Netherlands), pp 99–116

    Google Scholar 

  13. Hotchkiss AT Jr, Hicks KB (1990) Analysis of oligogalacturonic acids with 50 or fewer residues by high-performance anion-exchange chromatography and pulsed amperometric detection. Anal Biochem 184(2):200–206

    Article  CAS  PubMed  Google Scholar 

  14. Pontiggia D, Ciarcianelli J, Salvi G, Cervone F, De Lorenzo G, Mattei B (2015) Sensitive detection and measurement of oligogalacturonides in Arabidopsis. Front Plant Sci 6:258

    Article  PubMed  PubMed Central  Google Scholar 

  15. Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G (2015) Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci USA 112:5533–5538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korner R, Limberg G, Mikkelsen JD, Roepstorff P (1998) Characterization of enzymatic pectin digests by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 33:836–842

    Article  CAS  PubMed  Google Scholar 

  17. Remoroza C, Cord-Landwehr S, Leijdekkers AGM, Moerschbacher BM, Schols HA, Gruppen H (2012) Combined HILIC-ELSD/ESI-MS n enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydr Polym 90:41–48

    Article  CAS  PubMed  Google Scholar 

  18. Westphal Y, Schols HA, Voragen AGJ, Gruppen H (2010) Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis. J Chromatogr A 1217:689–695

    Article  CAS  PubMed  Google Scholar 

  19. Kester HCM, Visser J (1990) Purification and characterization of polygalacturonases produced by the hyphal fungus Aspergillus Niger. Biotechnol Appl Biochem 12:150–160

    CAS  PubMed  Google Scholar 

  20. Mathieu Y, Kurkdijan A, Xia H, Guern J, Koller A, Spiro M, O'Neill M, Albersheim P, Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1:333–343

    Google Scholar 

  21. Mathieu Y, Guern J, Spiro MD, O'Neill MA, Kates K, Darvill AG, Albersheim P (1998) The transient nature of the oligogalacturonide-induced ion fluxes of tobacco cells is not correlated with fragmentation of the oligogalacturonides. Plant J 16:305–311

    Article  CAS  Google Scholar 

  22. Thain JF, Doherty HM, Bowles DJ, Wildon DC (1990) Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells. Plant Cell Environ 13:569–574

    Article  CAS  Google Scholar 

  23. Messiaen J, Read ND, Van Cutsem P, Trewavas AJ (1993) Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts. J Cell Sci 104:365–371

    CAS  Google Scholar 

  24. Moscatiello R, Mariani P, Sanders D, Maathuis FJM (2006) Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. J Exp Bot 57:2847–2865

    Article  CAS  PubMed  Google Scholar 

  25. Savatin DV, Gigli BN, Marti L, Fabbri C, Cervone F, De Lorenzo G (2014) The Arabidopsis NPK1-related protein kinases ANPs are required for elicitor-induced oxidative burst and immunity. Plant Physiol 165:1188–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gigli BN, Gravino M, Savatin DV (2015) Luminol-based assay for detection of immunity elicitor-induced hydrogen peroxide production in Arabidopsis thaliana leaves. Bio-protocol 5(24):e1685http://www.bio-protocol.org/e1685

  27. Legendre L, Rueter S, Heinstein PF, Low PS (1993) Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol 102:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Binet MN, Bourque S, Lebrun-Garcia A, Chiltz A, Pugin A (1998) Comparison of the effects of cryptogein and oligogalacturonides on tobacco cells and evidence of different form of desensitization induced by these elicitors. Plant Sci 137:33–41

    Article  CAS  Google Scholar 

  29. Stennis MJ, Chandra S, Ryan CA, Low PS (1998) Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiol 117:1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol 157:804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gravino M, Savatin DV, Macone A, De Lorenzo G (2015) Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. Plant J 84:1073–1086

    Article  CAS  PubMed  Google Scholar 

  32. Farmer EE, Moloshok TD, Saxton MJ, Ryan CA (1991) Oligosaccharide signaling in plants: specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem 266:3140–3145

    Google Scholar 

  33. Mattei B, Spinelli F, Pontiggia D, De Lorenzo G (2016) Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. Front Plant Sci 7:1107. doi: 10.3389/fpls.2016.01107

    Google Scholar 

  34. Baldwin EA, Pressey R (1988) Tomato polygalacturonase elicits ethylene production in tomato fruit. J Am Soc Hort Sci 113:92–95

    CAS  Google Scholar 

  35. Baldwin EA, Biggs RH (1988) Cell-wall lysing enzymes and products of cell-wall digestion elicit ethylene in citrus. Physiol Plant 73:58–64

    Article  CAS  Google Scholar 

  36. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savatin DV, Ferrari S, Sicilia F, De Lorenzo G (2011) Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis. Plant Physiol 157:1163–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savatin DV, Gigli BN, Gravino M, Fabbri C, Pontiggia D, Mattei B (2015) Camalexin quantification in Arabidopsis thaliana leaves infected with Botrytis cinerea. Bio-protocol 5(2):e1379 http://www.bio-protocol.org/e1379

  39. Aziz A, Heyraud A, Lambert B (2004) Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta 218:767–774

    Article  CAS  PubMed  Google Scholar 

  40. Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marfà V, Gollin DJ, Eberhard S, Mohnen D, Darvill A, Albersheim P (1991) Oligogalac-turonides are able to induce flowers to form on tobacco explants. Plant J 1:217–225

    Google Scholar 

  42. Branca C, De Lorenzo G, Cervone F (1988) Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments. Physiol Plant 72:499–504

    Article  CAS  Google Scholar 

  43. Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder Taylor AT, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brecht JK, Huber DJ (1988) Products released from enzymically active cell wall stimulate ethylene production and ripening in preclimacteric tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol 88:1037–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by ERA-Net (grant ERA-CAPS 2014 “SIPIS—DECODING LIGAND-RECEPTOR specificities of LysM-Proteins IN PLANT IMMUNITY AND SYMBIOSIS) and by “Sapienza Università di Roma (grant “Ricerche UNIVERSITARIE” 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Benedetti, M., Mattei, B., Pontiggia, D., Salvi, G., Savatin, D.V., Ferrari, S. (2017). Methods of Isolation and Characterization of Oligogalacturonide Elicitors. In: Shan, L., He, P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, vol 1578. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6859-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6859-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6858-9

  • Online ISBN: 978-1-4939-6859-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics