Methods to Quantify PAMP-Triggered Oxidative Burst, MAP Kinase Phosphorylation, Gene Expression, and Lignification in Brassicas

  • Simon R. Lloyd
  • Christopher J. Ridout
  • Henk-jan SchoonbeekEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1578)


Quantitative disease resistance (QDR) based on PAMP-triggered immunity (PTI) could be durable and effective against many pathogens (broad spectrum). Development of methods to evaluate PTI responses in crops could therefore accelerate breeding for durable QDR. Most PTI-studies involved model plants such as Arabidopsis and Nicotiana benthamiana or cell cultures, and cannot be directly applied to diverse germplasm of crop plants.

We developed methods to measure PTI in Brassica crop species (Lloyd et al., Mol Plant Microbe Interact 27:286–295, 2014) which we have elaborated and expanded here to enable their use for screening and evaluating germplasm for potential QDR in breeding programs.

Key words

PAMP-triggered immunity Crop plants Brassica napus Brassica oleracea Quantitative disease resistance Reactive oxygen species Lignin 



We like to thank Sam Holt and Francesca Stefanato for critical reading of the manuscript, Cecile Ségonzac and Freddy Boutrot in the Cyril Zipfel group (The Sainsbury Lab, Norwich, UK) for sharing their PTI protocols and thinking about adaptations for use on Brassica plants, and Yaizu Suisankagaku Industry CO (Yaizu, Japan) for providing CSC. This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/G042960/1 (as part of the consortium ERA-PG “PRR-CROP”), BB/N005007/1 (as part of the ERA-CAPS consortium “MAQBAT”), the John Innes Institute BIO strategic grant BB/J004553/1 and by a BBSRC doctoral training grant to S.R.L.


  1. 1.
    Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276. doi: 10.1046/j.1365-313X.1999.00265.x CrossRefPubMedGoogle Scholar
  2. 2.
    Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011. doi: 10.1016/s1097-2765(00)80265-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760. doi: 10.1016/j.cell.2006.03.037 CrossRefPubMedGoogle Scholar
  5. 5.
    Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103(29):11086–11091. doi: 10.1073/pnas.0508882103 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49):19613–19618. doi: 10.1073/pnas.0705147104 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wan JR, Tanaka K, Zhang XC, Son GH, Brechenmacher L, Tran HNN, Stacey G (2012) LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol 160(1):396–406. doi: 10.1104/pp.112.201699 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272. doi: 10.1016/j.molcel.2014.03.028 CrossRefPubMedGoogle Scholar
  9. 9.
    Lloyd SR, Schoonbeek H-j, Trick M, Zipfel C, Ridout CJ (2014) Methods to study PAMP-triggered immunity in Brassica species. Mol Plant Microbe Interact 27(3):286–295. doi: 10.1094/MPMI-05-13-0154-FI CrossRefPubMedGoogle Scholar
  10. 10.
    Schoonbeek H-j, Wang H-H, Stefanato FL, Craze M, Bowden S, Wallington E, Zipfel C, Ridout CJ (2015) Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol 206(2):606–613. doi: 10.1111/nph.13356 CrossRefPubMedGoogle Scholar
  11. 11.
    Segonzac C, Feike D, Gimenez-Ibanez S, Hann DR, Zipfel C, Rathjen JP (2011) Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol 156(2):687–699. doi: 10.1104/pp.110.171249 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension-cultures of castor bean. Plant Physiol 91(3):889–897. doi: 10.1104/pp.91.3.889 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ride JP (1975) Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiol Plant Pathol 5(2):125–134. doi: 10.1016/0048-4059(75)90016-8 CrossRefGoogle Scholar
  14. 14.
    Liu TT, Liu ZX, Song CJ, Hu YF, Han ZF, She J, Fan FF, Wang JW, Jin CW, Chang JB, Zhou JM, Chai JJ (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336(6085):1160–1164. doi: 10.1126/science.1218867 CrossRefPubMedGoogle Scholar
  15. 15.
    Nishinaka Y, Aramaki Y, Yoshida H, Masuya H, Sugawara T, Ichimori Y (1993) A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells. Biochem Biophys Res Commun 193(2):554–559. doi: 10.1006/bbrc.1993.1659 CrossRefPubMedGoogle Scholar
  16. 16.
    Felix G, Regenass M, Spanu P, Boller T (1994) The protein phosphatase inhibitor Calyculin A mimics elicitor action in plant-cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with p-33 phosphate. Proc Natl Acad Sci U S A 91(3):952–956. doi: 10.1073/pnas.91.3.952 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eynck C, Koopmann B, Karlovsky P, von Tiedemann A (2009) Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopathology 99(7):802–811. doi: 10.1094/phyto-99-7-0802 CrossRefPubMedGoogle Scholar
  18. 18.
    Pearce RB, Ride JP (1982) Chitin and related-compounds as elicitors of the lignification response in wounded wheat leaves. Physiol Plant Pathol 20(1):119–123. doi: 10.1016/0048-4059(82)90030-3 CrossRefGoogle Scholar
  19. 19.
    Chassot C, Buchala AJ, Schoonbeek H, Métraux J-P, Lamotte O (2008) Wounding causes a powerful but transient protection against a major plant pathogen. Plant J 55(4):555–567. doi: 10.1111/j.1365-313X.2008.03540.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Simon R. Lloyd
    • 1
  • Christopher J. Ridout
    • 1
  • Henk-jan Schoonbeek
    • 1
    Email author
  1. 1.Department of Crop GeneticsJohn Innes CentreNorwichUK

Personalised recommendations