Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing

  • Levi Lowder
  • Aimee Malzahn
  • Yiping QiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1578)


Multiplex CRISPR-Cas9 nuclease mediated genome editing is an efficient method for disrupting gene function in plants. Use of CRISPR-Cas9 has escalated rapidly in recent years and is expected to become routine practice in molecular biology and related fields of research. Due to the relatively novel and widespread adoption of this technology, first-time users may not have regular access to experienced guidance or technical support from peers or mentors. Here, we offer guidance and technical support in the form of a detailed and tested protocol for simultaneous targeting of three separate loci on the TRANSPARENT TESTA 4 (TT4) gene in Arabidopsis thaliana using multiplex CRISPR-Cas9. Although we target multiple loci on a single gene in Arabidopsis, the same approach can be used to target multiple genes or alleles in other plant species as well. We recommend the use of a molecular toolkit to streamline the process and make recommendations for this type of approach. The protocol starts with an overview of the reagents and covers designing of gRNAs and assembly of components into a final T-DNA delivery molecule through Golden Gate cloning and Multisite Gateway LR recombination.

Key words

CRISPR/Cas9 Plant genome editing Multiplex Golden gate assembly Gateway cloning 



This work is supported by startup funds from East Carolina University and a Collaborative Funding Grant from North Carolina Biotechnology Center and Syngenta (2016-CFG-8003) to Y.Q.


  1. 1.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi: 10.1126/science.1225829 CrossRefPubMedGoogle Scholar
  2. 2.
    Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84CrossRefPubMedGoogle Scholar
  3. 3.
    Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131CrossRefPubMedGoogle Scholar
  4. 4.
    Deltcheva E, Chylinski K, Sharma C, Gonzales K, Chao Y, Pirzada Z, Eckert M, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–609CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi: 10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi: 10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li J-F, Norville J, Aach J, McCormack M, Zhang D, Bush J, Chruch G, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782. doi: 10.1534/genetics.111.131433 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi: 10.1534/genetics.110.120717 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Weber J, Ollinger R, Mathias F (2015) CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A 112(45):13982–13987CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhou H, Liu B, Weeks D, Spalding M, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. doi: 10.1093/nar/gku806 Google Scholar
  12. 12.
    Ran A, Hsu P, Lin C-Y, Gootenberg J, Konermann S, Trevino A, Scott D, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lowder L, Zhang D, Baltes N, Paul J III, Tang X, Zheng X, Voytas D, Hsieh T-F, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469. doi: 10.1104/pp.103.027979 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Graham D, Root D (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shirley B, Kubasek W, Storz G, Bruggemann E, Koornneef M, Ausubel F, Goodman H (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8(5):659–671CrossRefPubMedGoogle Scholar
  17. 17.
    Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L (2015) Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS One. doi: 10.1371/journal.pone.0119054 Google Scholar
  18. 18.
    Zhang F, Maeder M, Unger-Wallace E, Hoshaw J, Reyon D, Christian M, Li X, Pierick C, Dobbs D, Peterson T, Joung K, Voytas D (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zing finger nucleases. Proc Natl Acad Sci U S A 107(26):12028–12033CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Qi Y, Zhang Y, Zhang F, Baller J, Cleland S, Ryu Y, Starker C, Voytas D (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23:547–554CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Feng Z, Mao Y, Zhang B, Wei P, Yang D-L, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu J-K (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111(12):4632–4637CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Doench J, Hartenian E, Graham D, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B, Xavier R, Root D (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang T, Wei J, Sabatini D, Lander E (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84CrossRefPubMedGoogle Scholar
  23. 23.
    Singh R, Kuscu C, Quinlan A, Qi Y, Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43(18). doi: 10.1093/nar/gkv575
  24. 24.
    Tsai S, Zheng Z, Nguyen N, Liebers M, Topkar V, Thapar V, Wyvekens N, Khayter C, Iafrate J, Le L, Aryee M, Joung K (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197CrossRefPubMedGoogle Scholar
  25. 25.
    Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771CrossRefPubMedGoogle Scholar
  26. 26.
    De Wilde C, Van Houdt H, De Buck S, Angenon G, De Jaeger G (2000) Depicker A. Plants as bioreactors for protein production: avoiding the problem of transgene silencing 43:347–359Google Scholar
  27. 27.
    Nishimasu H, Ran A, Hsu P, Konermann S, Shehata S, Dohmae N, Ishitani R (2014) Crystal structure of Cas9. Cell 156:935–949CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Maryland, College ParkGreenvilleUSA
  2. 2.Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkUSA

Personalised recommendations