Skip to main content

Chitin and Stress Induced Protein Kinase Activation

  • Protocol
  • First Online:
Plant Pattern Recognition Receptors

Abstract

The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez M, Petersen M, Mundy J (2010) Plant MAP kinase cascades. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  3. Rasmussen M, Roux M, Petersen M, Mundy J (2012) Map kinase cascades in plant innate immunity. Front Plant Sci 3(169):1–6

    Google Scholar 

  4. Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martenson RE, Law MJ, Deibler GE (1983) Identification of multiple in vivo phosphorylation site in rabbit myelin basic protein. J Biol Chem 258:930–937

    CAS  PubMed  Google Scholar 

  6. Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujii H, Zhu JK (2012) Osmotic stress signaling via protein kinases. Cell Mol Life Sci 69:3165–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boudsocq M, Droillard M-J, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491–503

    Article  CAS  PubMed  Google Scholar 

  10. Huang JZ, Huber SC (2001) Phosphorylation of synthetic peptides by a CDPK and plant SNF1-related protein kinase. Influence of proline and basic amino acid residues at selected positions. Plant Cell Physiol 42:1079–1087

    Article  CAS  PubMed  Google Scholar 

  11. Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5:e13935

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dale S, Wilson WA, Edelman AM, Hardie DG (1995) Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett 361:191–195

    Article  CAS  PubMed  Google Scholar 

  13. Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Brien-Simpson NM, Ede NJ, Brown LE, Swan J, Jackson DC (1997) Polymerization of unprotected synthetic peptides: a view toward synthetic peptide vaccines. J Am Chem Soc 119:1183–1188

    Article  Google Scholar 

  15. Bressendorff S, Azevedo R, Kenchappa CS, Ponce de León I, Olsen JV, Rasmussen MW, Erbs G, Newman MA, Petersen M, Mundy J (2016) An innate immunity pathway in the moss Physcomitrella patens. Plant Cell 28:1328–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Z, Guo G, Zhang M, Liu CY, Hu Q, Lam H, Cheng H, Xue Y, Li J, Li N (2013) Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase. Mol Cell Proteomics 12:3559–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roitinger E, Hofer M, Köcher T, Pichler P, Novatchkova M, Yang J, Schlögelhofer P, Mechtler K (2015) Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol Cell Proteomics 14:556–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiménez C, Berl T, Rivard CJ, Edelstein CL, Capasso JM (2004) Phosphorylation of MAP kinase-like proteins mediate the response of the halotolerant alga Dunaliella viridis to hypertonic shock. Biochim Biophys Acta 1644:61–69

    Article  PubMed  Google Scholar 

  19. Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones DG (1999) Rapid Avr 9- and Cf-9–dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11:273–288

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Danish Basic Research Foundation (Center for Comparative Genomics) and the Danish Research Council for Nature and the Universe (Comparative & functional genomics of plant innate immunity, 1323-00267A) to JM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Mundy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kenchappa, C. et al. (2017). Chitin and Stress Induced Protein Kinase Activation. In: Shan, L., He, P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, vol 1578. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6859-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6859-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6858-9

  • Online ISBN: 978-1-4939-6859-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics