Advertisement

CDPK Activation in PRR Signaling

  • Heike Seybold
  • Marie BoudsocqEmail author
  • Tina Romeis
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1578)

Abstract

Calcium-dependent protein kinases undergo a rapid biochemical activation in response to an intracellular Ca increase induced by the PRR-dependent perception of a pathogen-related stimulus. Based on SDS gel resolution, the in-gel kinase assay allows the analysis of multiple in vivo protein samples in parallel, combining the advantage of protein separation according to molecular mass with the activity read-out of a protein kinase assay. It thus enables to follow the transient CDPK activation and inactivation in response to in vivo elicitation with a time-wise resolution. In addition, changes of CDPK phosphorylation activity often correlate with slight shifts in the enzyme’s apparent molecular mass, indicating posttranslational modifications and a conformational change of the active enzyme compared to its inactive resting form. These band shifts can be detected by a simple immunoblotting to monitor CDPK activation.

Key words

CDPK Signal transduction In-gel kinase assay Electrophoretic band shift Transient expression Protoplast Phosphorylation target 

Notes

Acknowledgments

This work was supported by the Agence Nationale de la Recherche to M.B. (grant number ANR-15-CE20-0003-01) and by German Science Foundation DFG within SFB 973 and FOR 964 to T.R. The IPS2 benefits from the support of the LabEx Saclay Plant Sciences-SPS (grant number ANR-10-LABX-0040-SPS).

References

  1. 1.
    Suzuki K, Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7:639–647CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Romeis T, Piedras P, Jones JD (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12:803–816CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte C-P, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci U S A 110:8744–8749CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A 102:10736–10741CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983CrossRefPubMedGoogle Scholar
  7. 7.
    Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng S-H, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422Google Scholar
  9. 9.
    Gao X, Chen X, Lin W, Chen S, Lu D, Niu Y, Li L, Cheng C, McCormack M, Sheen J, Shan L, He P (2013) Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. PLoS Pathog 9:e1003127CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Monaghan J, Matschi S, Romeis T, Zipfel C (2015) The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. Plant Signal Behav 10:e1018497CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y, Chen S, Zhou J-M (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Dahlem Centre of Plant Sciences, Plant BiochemistryFreie Universität BerlinBerlinGermany
  2. 2.Institute of Plant Sciences Paris-Saclay (IPS2)CNRS, INRA, Université Paris-Sud, Université d’Evry Val d’Essonne, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-SaclayOrsayFrance

Personalised recommendations