Skip to main content

Generating Conformation and Complex-Specific Synthetic Antibodies

  • Protocol
  • First Online:
Book cover Synthetic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1575))

Abstract

Phage display is commonly used to identify and isolate binders from large combinatorial libraries. Here we present phage selection protocols enabling generation of synthetic antibodies capable of recognizing multiprotein complexes and conformational states. The procedure describes stages of the experiment design, optimization, and screening, as well as provides the framework for building downstream assays with an end goal of isolating bioactive antibodies for future therapeutic use. The methods described are also applicable to screening directly on cells and can be ported to other in vitro directed evolution systems utilizing non-immunoglobulin scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116. doi:10.1038/nbt1126

    Article  CAS  PubMed  Google Scholar 

  2. Bradbury A, Velappan N, Verzillo V et al (2003) Antibodies in proteomics I: generating antibodies. Trends Biotechnol 21:275–281. doi:10.1016/S0167-7799(03)00112-4

    Article  CAS  PubMed  Google Scholar 

  3. Bradbury A, Velappan N, Verzillo V et al (2003) Antibodies in proteomics II: screening, high-throughput characterization and downstream applications. Trends Biotechnol 21:312–317. doi:10.1016/S0167-7799(03)00117-3

    Article  CAS  PubMed  Google Scholar 

  4. Miller KR, Koide A, Leung B et al (2012) T Cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS One 7:e43746. doi:10.1371/journal.pone.0043746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Persson H, Ye W, Wernimont A et al (2012) CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. J Mol Biol. doi:10.1016/j.jmb.2012.11.037

    PubMed  PubMed Central  Google Scholar 

  6. Prassler J, Thiel S, Pracht C et al (2011) HuCAL PLATINUM, a synthetic fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413:261–278. doi:10.1016/j.jmb.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  7. Johnson G, Wu TT (2001) Kabat database and its applications: future directions. Nucleic Acids Res 29:205–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu TT, Johnson G, Kabat EA (1993) Length distribution of CDRH3 in antibodies. Protein Struct Funct Genet 16:1–7

    Article  CAS  Google Scholar 

  9. Tiller T, Schuster I, Deppe D et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. mAbs 5:445–470. doi:10.4161/mabs.24218

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hornsby M, Paduch M, Miersch S et al (2015) A high through-put platform for recombinant antibodies to folded proteins. Mol Cell Proteomics 14:2833–2847. doi:10.1074/mcp.O115.052209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou H, Wang Y, Wang W et al (2009) Generation of monoclonal antibodies against highly conserved antigens. PLoS One 4:e6087. doi:10.1371/journal.pone.0006087

    Article  PubMed  PubMed Central  Google Scholar 

  12. Scheerlinck JP, DeLeys R, Saman E et al (1993) Redistribution of a murine humoral immune response following removal of an immunodominant B cell epitope from a recombinant fusion protein. Mol Immunol 30:733–739

    Article  CAS  PubMed  Google Scholar 

  13. Saldanha JW (2009) Humanization of recombinant antibodies. Cambridge University Press, New York, NY

    Book  Google Scholar 

  14. Li Q, Wanderling S, Paduch M et al (2014) Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat Struct Mol Biol 21:244–252. doi:10.1038/nsmb.2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao J, Sidhu SS, Wells JA (2009) Two-state selection of conformation-specific antibodies. Proc Natl Acad Sci U S A 106:3071–3076. doi:10.1073/pnas.0812952106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rizk SS, Paduch M, Heithaus JH et al (2011) Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat Struct Mol Biol 18:437–442. doi:10.1038/nsmb.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shukla AK, Manglik A, Kruse AC et al (2013) Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141. doi:10.1038/nature12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mateja A, Paduch M, Chang H-Y et al (2015) Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347:1152–1155. doi:10.1126/science.1261671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uysal S, Vásquez V, Tereshko V et al (2009) Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci U S A 106:6644–6649. doi:10.1073/pnas.0810663106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Welch BD, Paduch M, Leser GP et al (2014) Probing the functions of the paramyxovirus glycoproteins F and HN with a panel of synthetic antibodies. J Virol 88:11713–11725. doi:10.1128/JVI.01707-14

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stuwe T, Bley CJ, Thierbach K et al (2015) Architecture of the fungal nuclear pore inner ring complex. Science 350:56–64. doi:10.1126/science.aac9176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stuwe T, Correia AR, Lin DH et al (2015) Architecture of the nuclear pore complex coat. Science 347:1148–1152. doi:10.1126/science.aaa4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wittrup KD, Verdine GL (2012) Protein engineering for therapeutics. Academic, New York, NY

    Google Scholar 

  24. Sidhu SS (2005) Phage display in biotechnology and drug discovery. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  25. Brawley CM, Uysal S, Kossiakoff AA, Rock RS (2010) Characterization of engineered actin binding proteins that control filament assembly and structure. PLoS One 5:e13960. doi:10.1371/journal.pone.0013960

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schlapschy M, Grimm S, Skerra A (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng Des Sel 19:385–390. doi:10.1093/protein/gzl018

    Article  CAS  PubMed  Google Scholar 

  27. Vogt AD, Pozzi N, Chen Z, Di Cera E (2014) Essential role of conformational selection in ligand binding. Biophys Chem 186:13–21. doi:10.1016/j.bpc.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  28. James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299:1362–1367. doi:10.1126/science.1079731

    Article  CAS  PubMed  Google Scholar 

  29. Lamboy JA, Arter JA, Knopp KA et al (2009) Phage wrapping with cationic polymers eliminates nonspecific binding between M13 phage and high pI target proteins. J Am Chem Soc 131:16454–16460. doi:10.1021/ja9050873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Hoey RJ, Lin G et al (2012) Identification of a tetratricopeptide repeat-like domain in the nicastrin subunit of γ-secretase using synthetic antibodies. Proc Natl Acad Sci U S A 109:8534–8539. doi:10.1073/pnas.1202691109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhong N, Loppnau P, Seitova A et al (2015) Optimizing production of antigens and Fabs in the context of generating recombinant antibodies to human proteins. PLoS One 10:e0139695. doi:10.1371/journal.pone.0139695

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fellouse FA, Esaki K, Birtalan S et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373:924–940 S0022-2836(07)01062-5

    Article  CAS  PubMed  Google Scholar 

  33. Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2:1368–1386. doi:10.1038/nprot.2007.151

    Article  CAS  PubMed  Google Scholar 

  34. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol Clifton NJ 537:39–64. doi:10.1007/978-1-59745-251-9_3

    Article  CAS  Google Scholar 

  35. Robinson M-P, Ke N, Lobstein J et al (2015) Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun. doi:10.1038/ncomms9072

    Google Scholar 

  36. Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55. doi:10.1093/nar/gkr1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  38. Nieba L, Nieba-Axmann SE, Persson A et al (1997) BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal Biochem 252:217–228. doi:10.1006/abio.1997.2326

    Article  CAS  PubMed  Google Scholar 

  39. Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6. doi:10.1016/j.ab.2006.10.040

    Article  CAS  PubMed  Google Scholar 

  40. Rich RL, Myszka DG (2010) Grading the commercial optical biosensor literature-class of 2008: “The Mighty Binders”. J Mol Recognit 23:1–64. doi:10.1002/jmr.1004

    Article  CAS  PubMed  Google Scholar 

  41. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221. doi:10.1038/nprot.2007.321

    Article  CAS  PubMed  Google Scholar 

  42. Lo M-C, Aulabaugh A, Jin G et al (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159. doi:10.1016/j.ab.2004.04.031

    Article  CAS  PubMed  Google Scholar 

  43. Cimmperman P, Baranauskiene L, Jachimoviciūte S et al (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231. doi:10.1529/biophysj.108.134973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vedadi M, Niesen FH, Allali-Hassani A et al (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci U S A 103:15835–15840. doi:10.1073/pnas.0605224103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nettleship JE, Brown J, Groves MR, Geerlof A (2008) Methods for protein characterization by mass spectrometry, thermal shift (ThermoFluor) assay, and multiangle or static light scattering. Methods Mol Biol Clifton NJ 426:299–318. doi:10.1007/978-1-60327-058-8_19

    Article  CAS  Google Scholar 

  46. Jacobs SA, Wu S-J, Feng Y et al (2009) Cross-interaction chromatography: a rapid method to identify highly soluble monoclonal antibody candidates. Pharm Res 27:65–71. doi:10.1007/s11095-009-0007-z

    Article  PubMed  Google Scholar 

  47. Liu Y, Caffry I, Wu J et al (2014) High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. mAbs 6:483–492. doi:10.4161/mabs.27431

    Article  PubMed  Google Scholar 

  48. Matochko WL, Chu K, Jin B et al (2012) Deep sequencing analysis of phage libraries using Illumina platform. Methods 58:47–55. doi:10.1016/j.ymeth.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  49. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

We thank Vincent Lu, Daniel King, and Svitlana Usatyuk for contributing to the development of protocols. This work was supported by National Institutes of Health Grants: U54-GM087519, U54-HG006436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Paduch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Paduch, M., Kossiakoff, A.A. (2017). Generating Conformation and Complex-Specific Synthetic Antibodies. In: Tiller, T. (eds) Synthetic Antibodies. Methods in Molecular Biology, vol 1575. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6857-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6857-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6855-8

  • Online ISBN: 978-1-4939-6857-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics