Skip to main content

Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers

  • Protocol
  • First Online:
Book cover Synthetic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1575))

Abstract

Aptamer selection protocols, named cell-SELEX, have been developed to target trans-membrane proteins using whole living cells as target. This technique presents several advantages. (1) It does not necessitate the use of purified proteins. (2) Aptamers are selected against membrane proteins in their native conformation. (3) Cell-SELEX can be performed to identify aptamers against biomarkers differentially expressed between different cell lines without prior knowledge of the targets. (4) Aptamers identified by cell-SELEX can be further used to purify their targets and to identify new biomarkers. Here, we provide a protocol of cell-SELEX including the preparation of an oligonucleotide library, next-generation sequencing and radioactive binding assays. Furthermore, we also provide a protocol to purify and identify the target of these aptamers. These protocols could be useful for the discovery of lead therapeutic compounds and diagnostic cell-surface biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  2. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  3. Cibiel A, Dupont DM, Duconge F (2011) Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4:1216–1235

    Article  CAS  PubMed Central  Google Scholar 

  4. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  Google Scholar 

  5. Opazo F, Levy M, Byrom M, Schafer C, Geisler C, Groemer TW, Ellington AD, Rizzoli SO (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9:938–939

    Article  CAS  PubMed  Google Scholar 

  6. Zhang P, Zhao N, Zeng Z, Chang CC, Zu Y (2010) Combination of an aptamer probe to CD4 and antibodies for multicolored cell phenotyping. Am J Clin Pathol 134:586–593

    Article  CAS  PubMed  Google Scholar 

  7. Meyer M, Scheper T, Walter JG (2013) Aptamers: versatile probes for flow cytometry. Appl Microbiol Biotechnol 97(16):7097–7109

    Article  CAS  PubMed  Google Scholar 

  8. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689

    Article  CAS  PubMed  Google Scholar 

  9. Keeney TR, Bock C, Gold L, Kraemer S, Lollo B, Nikrad M, Stanton M, Stewart A, Vaught JD, Walker JJ (2009) Automation of the somalogic proteomics assay: a platform for biomarker discovery. J Assoc Lab Automa 14:360–366

    Article  CAS  Google Scholar 

  10. Pestourie C, Tavitian B, Duconge F (2005) Aptamers against extracellular targets for in vivo applications. Biochimie 87:921–930

    Article  CAS  PubMed  Google Scholar 

  11. Cibiel A, Pestourie C, Duconge F (2012) In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie 94:1595–1606

    Article  CAS  PubMed  Google Scholar 

  12. Dickinson H, Lukasser M, Mayer G, Huttenhofer A (2015) Cell-SELEX: in vitro selection of synthetic small specific ligands. Methods Mol Biol 1296:213–224

    Article  CAS  PubMed  Google Scholar 

  13. Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:e123

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ohuchi, S.P., Ohtsu, T. and Nakamura, Y. (2005) A novel method to generate aptamers against recombinant targets displayed on the cell surface. Nucleic Acids Symp Ser (Oxf), 49:351–352

    Google Scholar 

  15. Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 88(7):897–904

    Article  CAS  PubMed  Google Scholar 

  16. Pestourie C, Cerchia L, Gombert K, Aissouni Y, Boulay J, De Franciscis V, Libri D, Tavitian B, Duconge F (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16:323–335

    Article  CAS  PubMed  Google Scholar 

  17. Meyer S, Maufort JP, Nie J, Stewart R, McIntosh BE, Conti LR, Ahmad KM, Soh HT, Thomson JA (2013) Development of an efficient targeted cell-SELEX procedure for DNA aptamer reagents. PLoS One 8:e71798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zueva E, Rubio LI, Duconge F, Tavitian B (2011) Metastasis-focused cell-based SELEX generates aptamers inhibiting cell migration and invasion. Int J Cancer 128:797–804

    Article  CAS  PubMed  Google Scholar 

  19. Cibiel A, Quang NN, Gombert K, Theze B, Garofalakis A, Duconge F (2014) From ugly duckling to swan: unexpected identification from cell-SELEX of an anti-Annexin A2 aptamer targeting tumors. PLoS One 9:e87002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blank M, Weinschenk T, Priemer M, Schluesener H (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276:16464–16468

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Zhang M, Yang G, Zhang D, Ding H, Wang H, Fan M, Shen B, Shao N (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102:15–22

    Article  CAS  PubMed  Google Scholar 

  22. Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728

    Article  CAS  PubMed  Google Scholar 

  23. Parekh P, Tang Z, Turner PC, Moyer RW, Tan W (2010) Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal Chem 82:8642–8649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zueva E, Rubio LI, Duconge F, Tavitian B (2010) Metastasis-focused cell-based SELEX generates aptamers inhibiting cell migration and invasion. Int J Cancer 128:797–804

    Article  Google Scholar 

  25. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100:15416–15421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6:2230–2238

    Article  CAS  PubMed  Google Scholar 

  27. Ulrich H, Wrenger C (2009) Disease-specific biomarker discovery by aptamers. Cytometry A 75(9):727–733

    Article  PubMed  Google Scholar 

  28. Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN (2008) Aptamer-Facilitated Biomarker Discovery (AptaBiD). J Am Chem Soc 130(28):9137–9143

    Article  CAS  PubMed  Google Scholar 

  29. Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences [see comment]. Science 261:1411–1418

    Article  CAS  PubMed  Google Scholar 

  30. Quang NN, Pestourie C, Cibiel A, Ducongé F (2016) How to measure the affinity of aptamers for membrane proteins expressed on the surface of living adherent cells. Methods 97:35–43

    Article  CAS  PubMed  Google Scholar 

  31. Cunningham PR, Ofengand J (1990) Use of inorganic pyrophosphatase to improve the yield of in vitro transcription reactions catalyzed by T7 RNA polymerase. Biotechniques 9:713–714

    CAS  PubMed  Google Scholar 

  32. Padilla R, Sousa R (1999) Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2′-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res 27:1561–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hansske F, Cramer F (1979) Modification of the 3′ terminus of tRNA by periodate oxidation and subsequent reaction with hydrazides. Methods Enzymol 59:172–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This protocol of cell-SELEX was first developed in the lab of Domenico Libri before being further optimized in the lab of Bertrand Tavitian and now in the Neurodegenerative Diseases Laboratory, we thank all our collaborators from these labs for help and fruitful discussions, especially Carine Pestourie, Karine Gombert, Benoit Jego, Isabelle Janssens, Jocelyne Boulay, Mohamed Aissouni, Bertrand Tavitian, and Domenico Libri. We are also grateful to Dr. Rui Sousa (University of Texas, San Antonio) for his generous gift of a T7Y639F RNA polymerase-expressing plasmid. Studies relating to selection of aptamers in our laboratories were supported by grants from the “Agence Nationale pour la Recherche” [projects ANR-RNTS TomoFluo3D, ANR-PNANO nanorings and under the frame of EuroNanoMed (project META)]; the FMT-XCT European program [Grant agreement no. 201792] and the European Molecular Imaging Laboratory (EMIL) network [EU contract LSH-2004-503569].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Ducongé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Quang, N.N., Miodek, A., Cibiel, A., Ducongé, F. (2017). Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers. In: Tiller, T. (eds) Synthetic Antibodies. Methods in Molecular Biology, vol 1575. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6857-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6857-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6855-8

  • Online ISBN: 978-1-4939-6857-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics