Skip to main content

“Dipstick” Colorimetric Detection of Metal Ions Based on Immobilization of DNAzyme and Gold Nanoparticles onto a Lateral Flow Device

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1571))

Abstract

Real-time, on-site detection and quantification of different trace analytes is a challenge that requires both searching a general class of molecules to recognize a broad range of contaminants and translating this recognition to easily detectable signals. Functional nucleic acids, which include DNAzymes (DNA with catalytic activity) and aptamers (nucleic acids that bind an analyte), are ideal candidates for the target recognition. These nucleic acids can be selected by a combinatorial biology method called in vitro selection to interact with a particular analyte with high specificity and sensitivity. Furthermore, they can be incorporated into sensors by attaching signaling molecules. Due to the high extinction coefficients and distance-dependent optical properties, metallic nanoparticles such as the commonly used gold nanoparticles have been shown to be very attractive in converting analyte-specific functional DNA into colorimetric sensors. DNAzyme directed assembly of gold nanoparticles has been used to make colorimetric sensors for metal ions such as lead, uranium, and copper. To make the operation even easier and less vulnerable to operator's errors, dipstick tests have been constructed. Here, we describe protocols for the preparation of DNAzyme-linked gold nanoparticles (AuNP) that are then immobilized on to lateral flow devices to make easy-to-use dipstick tests for metal ions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  CAS  Google Scholar 

  2. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  Google Scholar 

  3. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    Article  CAS  Google Scholar 

  4. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  5. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  6. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  CAS  Google Scholar 

  7. Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    Article  CAS  Google Scholar 

  8. Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13:31–39

    Article  CAS  Google Scholar 

  9. Hesselberth J, Robertson MP, Jhaveri S, Ellington AD (2000) In vitro selection of nucleic acids for diagnostic applications. Rev Mol Biotechnol 74:15–25

    Article  CAS  Google Scholar 

  10. Famulok M (1999) Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol 9:324–329

    Article  CAS  Google Scholar 

  11. Ihms HE, Lu Y (2012) In vitro selection of metal ion-selective DNAzymes. Methods Mol Biol 848:297–316

    Article  CAS  Google Scholar 

  12. Brown AK, Li J, Pavot CMB, Lu Y (2003) A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42:7152–7161

    Article  CAS  Google Scholar 

  13. Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122:10466–10467

    Article  CAS  Google Scholar 

  14. Li J, Zheng W, Kwon AH, Lu Y (2000) In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res 28:481–488

    Article  CAS  Google Scholar 

  15. Bruesehoff PJ, Li J, Augustine AJ, Lu Y (2002) Improving metal ion specificity during in vitro selection of catalytic DNA. Comb Chem High Throughput Screen 5:327–335

    Article  CAS  Google Scholar 

  16. Carmi N, Shultz LA, Breaker RR (1996) In vitro selection of self-cleaving DNAs. Chem Biol 3:1039–1046

    Article  CAS  Google Scholar 

  17. Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 104:2056

    Article  CAS  Google Scholar 

  18. Vannela R, Adriaens P (2007) In vitro selection of Hg (II) and As (V)-dependent RNA-cleaving DNAzymes. Environ Eng Sci 24:73–84

    Article  CAS  Google Scholar 

  19. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94:4262–4266

    Article  CAS  Google Scholar 

  20. Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed Engl 45:90–94

    Article  CAS  Google Scholar 

  21. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  22. Liu J, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125

    Article  CAS  Google Scholar 

  23. Yigit MV, Mazumdar D, Kim H-K, Lee JH, Odintsov B, Lu Y (2007) Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8:1675–1678

    Article  CAS  Google Scholar 

  24. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  25. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  26. Liu J, Lu Y (2006) Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv Mater 18:1667–1671

    Article  CAS  Google Scholar 

  27. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  CAS  Google Scholar 

  28. Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126:12298–12305

    Article  CAS  Google Scholar 

  29. Liu J, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632

    Article  CAS  Google Scholar 

  30. Liu J, Lu Y (2006) Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods Mol Biol 335:275–288

    CAS  Google Scholar 

  31. Liu J, Lu Y (2007) Rational design of “Turn-On” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed Engl 46:7587–7590

    Article  CAS  Google Scholar 

  32. Liu J, Lu Y (2007) A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc 129:9838–9839

    Article  CAS  Google Scholar 

  33. Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683

    Article  CAS  Google Scholar 

  34. Liu J, Lu Y (2006) Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org Biomol Chem 4:3435–3441

    Article  CAS  Google Scholar 

  35. Torabi SF, Lu Y (2014) Functional DNA nanomaterials for sensing and imaging in living cells. Curr Opin Biotechnol 28:88–95

    Article  CAS  Google Scholar 

  36. Li L, Lu Y (2013) Functional DNA-integrated nanomaterials for biosensing. In: Fan C (ed) DNA nanotechnology. Springer, Berlin, Heidelberg, pp 277–305

    Chapter  Google Scholar 

  37. Zhang J, Liu B, Liu H, Zhang X, Tan W (2013) Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine 8:983–993

    Article  CAS  Google Scholar 

  38. Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 75:4155–4160

    Article  CAS  Google Scholar 

  39. Liu J, Mazumdar D, Lu Y (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed Engl 45:7955–7959

    Article  CAS  Google Scholar 

  40. Lu Y, Liu J, Mazumdar D (2009) Nanoparticles/dip stick. In: Mayer G (ed) Nucleic acid and peptide aptamers, vol 535. Humana Press, New York, pp 223–239

    Chapter  Google Scholar 

  41. Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80:8431–8437

    Article  CAS  Google Scholar 

  42. Mazumdar D, Liu J, Lu G, Zhou J, Lu Y (2010) Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun 46:1416–1418

    Article  CAS  Google Scholar 

  43. Handley DA (1989) Methods for synthesis of colloidal gold. In: Hayat MA (ed) Colloidal gold principles, methods, and applications, vol 1, 1st edn. Academic Press, San Diego, pp 13–32

    Chapter  Google Scholar 

Download references

Acknowledgment

This material is based on work from the following funding agencies—National Institute of Health (Grant no. ES016865), Department of Energy (DE- FG02-08ER64568), the National Science Foundation (Grant no. CTS-0120978 and DMI-0328162), and Department of House and Urban Development (ILLHT0112-06). Yi Lu is a cofounder of both ANDalyze and GlucoSentient, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mazumdar, D., Lan, T., Lu, Y. (2017). “Dipstick” Colorimetric Detection of Metal Ions Based on Immobilization of DNAzyme and Gold Nanoparticles onto a Lateral Flow Device. In: Rasooly, A., Prickril, B. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1571. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6848-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6848-0_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6846-6

  • Online ISBN: 978-1-4939-6848-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics