Skip to main content

Streak Imaging Flow Cytometer for Rare Cell Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1571))

Abstract

There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.

To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Balsam J, Bruck HA, Rasooly A (2015) Cell streak imaging cytometry for rare cell detection. Biosens Bioelectron 64:154–160

    Article  CAS  Google Scholar 

  2. Balsam J, Bruck HA, Rasooly A (2015) Mobile flow cytometer for mHealth. Methods Mol Biol 1256:139–153

    Article  CAS  Google Scholar 

  3. Balsam J, Bruck HA, Rasooly A (2014) Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput. Analyst 139(17):4322–4329

    Article  CAS  Google Scholar 

  4. Sun S, Ossandon M, Kostov Y, Rasooly A (2009) Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. Lab Chip 9(22):3275–3281

    Article  CAS  Google Scholar 

  5. Sun S, Yang M, Kostov Y, Rasooly A (2010) ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 10(16):2093–2100

    Article  CAS  Google Scholar 

  6. Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z et al (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7(10):9147–9155

    Article  CAS  Google Scholar 

  7. Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A (2013) Albumin testing in urine using a smart-phone. Lab Chip 13(21):4231–4238

    Article  CAS  Google Scholar 

  8. Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R et al (2013) Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip 13(20):4015–4023

    Article  CAS  Google Scholar 

  9. Zhu H, Ozcan A (2013) Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone. JoVE 74:e50451.

    Google Scholar 

  10. Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K et al (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13(7):1282–1288

    Article  CAS  Google Scholar 

  11. Zhu H, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137(11):2541–2544

    Article  CAS  Google Scholar 

  12. Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A (2011) Wide-field fluorescent microscopy on a cell-phone. Conf Proc IEEE Eng Med Biol Soc 2011:6801–6804

    Google Scholar 

  13. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83(17):6641–6647

    Article  CAS  Google Scholar 

  14. Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11(2):315–322

    Article  CAS  Google Scholar 

  15. Golden JP, Kim JS, Erickson JS, Hilliard LR, Howell PB, Anderson GP et al (2009) Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab Chip 9(13):1942–1950

    Article  CAS  Google Scholar 

  16. Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8(7):1097–1103

    Article  CAS  Google Scholar 

  17. Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20(12):2470–2487

    Article  CAS  Google Scholar 

  18. Ngundi MM, Qadri SA, Wallace EV, Moore MH, Lassman ME, Shriver-Lake LC et al (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40(7):2352–2356

    Article  CAS  Google Scholar 

  19. Moreno-Bondi MC, Taitt CR, Shriver-Lake LC, Ligler FS (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens Bioelectron 21(10):1880–1886

    Article  CAS  Google Scholar 

  20. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA et al (2007) The array biosensor: portable, automated systems. Anal Sci 23(1):5–10

    Article  Google Scholar 

  21. Kostov Y, Sergeev N, Wilson S, Herold KE, Rasooly A (2009) A simple portable electroluminescence illumination-based CCD detector. Methods Mol Biol 503:259–272

    Article  CAS  Google Scholar 

  22. Sapsford KE, Sun S, Francis J, Sharma S, Kostov Y, Rasooly A (2008) A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens Bioelectron 24(4):618–625

    Article  CAS  Google Scholar 

  23. Sun S, Francis J, Sapsford KE, Kostov Y, Rasooly A (2010) Multi-wavelength Spatial LED illumination based detector for in vitro detection of Botulinum Neurotoxin A Activity. Sens Actuators B 146(1-8):297–306

    Article  CAS  Google Scholar 

  24. Rasooly A, Bruck HA, Kostov Y (2013) An ELISA Lab-on-a-Chip (ELISA-LOC). Methods Mol Biol 949:451–471

    Article  Google Scholar 

  25. Rasooly A, Kostov Y, Bruck HA (2013) Charged-coupled device (CCD) detectors for Lab-on-a Chip (LOC) optical analysis. Methods Mol Biol 949:365–385

    Article  CAS  Google Scholar 

  26. Balsam J, Bruck HA, Rasooly A (2013) Capillary array waveguide amplified fluorescence detector for mHealth. Sens Actuators B 186:711–717

    Article  CAS  Google Scholar 

  27. Balsam J, Rasooly R, Bruck HA, Rasooly A (2014) Thousand-fold fluorescent signal amplification for mHealth diagnostics. Biosens Bioelectron 51:1–7

    Article  CAS  Google Scholar 

  28. Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A (2013) Low-cost technologies for medical diagnostics in low-resource settings. Expert Opin Med Diagn 7(3):243–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Rasooly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Balsam, J., Bruck, H.A., Ossandon, M., Prickril, B., Rasooly, A. (2017). Streak Imaging Flow Cytometer for Rare Cell Analysis. In: Rasooly, A., Prickril, B. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1571. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6848-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6848-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6846-6

  • Online ISBN: 978-1-4939-6848-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics