Skip to main content

Smartphone-Enabled Detection Strategies for Portable PCR–Based Diagnostics

  • Protocol
  • First Online:
Book cover Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1571))

Abstract

Incredible progress continues to be made toward development of low-cost nucleic acid-based diagnostic solutions suitable for deployment in resource-limited settings. Detection components play a vitally important role in these systems, but have proven challenging to adapt for operation in a portable format. Here we describe efforts aimed at leveraging the capabilities of consumer-class smartphones as a convenient platform to enable detection of nucleic acid products associated with DNA amplification via the polymerase chain reaction (PCR). First, we show how fluorescence-based detection can be incorporated into a portable convective thermocycling system controlled by a smartphone app. Raw images captured by the phone’s camera are processed to yield real-time amplification data comparable to benchtop instruments. Next, we leverage smartphone imaging to achieve label-free detection of PCR products by monitoring changes in electrochemical reactivity of embedded metal electrodes as the target DNA concentration increases during replication. These advancements make it possible to construct rugged inexpensive nucleic acid detection components that can be readily embedded in a variety of portable bioanalysis instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozcan A (2014) Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 14:3187–3194

    Article  CAS  Google Scholar 

  2. Laksanasopin T et al (2015) A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med 7:273re1

    Article  Google Scholar 

  3. Zhu H, Isikman SO, Mudanyali O, Greenbaum A, Ozcan A (2013) Optical imaging techniques for point-of-care diagnostics. Lab Chip 13:51–67

    Article  CAS  Google Scholar 

  4. Erickson D et al (2014) Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 14:3159–3164

    Article  CAS  Google Scholar 

  5. Xu X et al (2015) Advances in smartphone-based point-of-care diagnostics. Proc IEEE 103:236–247

    Article  CAS  Google Scholar 

  6. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for global health applications. PLoS One 4:e6320

    Article  Google Scholar 

  7. Tseng D et al (2010) Lensfree microscopy on a cellphone. Lab Chip 10:1787–1792

    Article  CAS  Google Scholar 

  8. Yu H, Tan Y, Cunningham BT (2014) Smartphone fluorescence spectroscopy. Anal Chem 86:8805–8813

    Article  CAS  Google Scholar 

  9. Wei Q et al (2014) Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 8:12725–12733. doi:10.1021/nn505821y

    Article  CAS  Google Scholar 

  10. Lee S, Oncescu V, Mancuso M, Mehta S, Erickson D (2014) A smartphone platform for the quantification of vitamin D levels. Lab Chip 14:1437–1442

    Article  CAS  Google Scholar 

  11. Oncescu V, Mancuso M, Erickson D (2014) Cholesterol testing on a smartphone. Lab Chip 14:759–763

    Article  CAS  Google Scholar 

  12. Oncescu V, O’Dell D, Erickson D (2013) Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13:3232–3238

    Article  CAS  Google Scholar 

  13. Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243

    Article  CAS  Google Scholar 

  14. San Park T, Li W, McCracken KE, Yoon J-Y (2013) Smartphone quantifies Salmonella from paper microfluidics. Lab Chip 13:4832–4840

    Article  Google Scholar 

  15. Fronczek CF, San Park T, Harshman DK, Nicolini AM, Yoon J-Y (2014) Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv 4:11103–11110

    Article  CAS  Google Scholar 

  16. Gallegos D et al (2013) Label-free biodetection using a smartphone. Lab Chip 13:2124–2132

    Article  CAS  Google Scholar 

  17. Huang Y-W, Ugaz VM (2013) Smartphone-based detection of unlabeled DNA via electrochemical dissolution. Analyst 138:2522–2526

    Article  CAS  Google Scholar 

  18. Krishnan M, Ugaz VM, Burns MA (2002) PCR in a Rayleigh-Benard convection cell. Science 298:793–793

    Article  Google Scholar 

  19. Priye A, Hassan YA, Ugaz VM (2013) Microscale chaotic advection enables robust convective DNA replication. Anal Chem 85:10536–10541

    Article  CAS  Google Scholar 

  20. Muddu R, Hassan YA, Ugaz VM (2011) Chaotically accelerated polymerase chain reaction by Microscale Rayleigh–Bénard convection. Angew Chem Int Ed 50:3048–3052

    Article  CAS  Google Scholar 

  21. Yao D-J, Chen J-R, Ju W-T (2007) Micro–Rayleigh-Bénard convection polymerase chain reaction system. JM3 6:043007–043009

    Google Scholar 

  22. Braun D, Goddard NL, Libchaber A (2003) Exponential DNA replication by laminar convection. Phys Rev Lett 91:158103

    Article  Google Scholar 

  23. Hennig M, Braun D (2005) Convective polymerase chain reaction around micro immersion heater. Appl Phys Lett 87:183901

    Article  Google Scholar 

  24. Braun D (2004) PCR by thermal convection. Mod Phys Lett B 18:775–784

    Article  CAS  Google Scholar 

  25. Priye A, Muddu R, Hassan YA, Ugaz VM (2011) Royal Society of Chemistry, Cambridge

    Google Scholar 

  26. Hühmer A, Landers J (2000) Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Anal Chem 72:5507–5512

    Article  Google Scholar 

  27. Pal R et al (2005) An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5:1024–1032

    Article  CAS  Google Scholar 

  28. Kopp MU, De Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048

    Article  CAS  Google Scholar 

  29. West J et al (2002) Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip 2:224–230

    Article  CAS  Google Scholar 

  30. Priye A et al (2016) Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem 88:4651–4560

    Article  CAS  Google Scholar 

  31. Ugaz VM, Krishnan M (2004) Novel convective flow based approaches for high-throughput PCR thermocycling. JALA 9:318–323

    CAS  Google Scholar 

  32. Skandarajah A, Reber CD, Switz NA, Fletcher DA (2014) Quantitative imaging with a mobile phone microscope. PLoS One 9:e96906

    Article  Google Scholar 

  33. Liu W, Saint DA (2002) Validation of a quantitative method for real time PCR kinetics. Biochem Biophys Res Commun 294:347–353

    Article  CAS  Google Scholar 

  34. Rutledge R (2004) Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucleic Acids Res 32:e178

    Article  CAS  Google Scholar 

  35. Huang Y-W, Shaikh F, Ugaz VM (2011) Tunable synthesis of encapsulated microbubbles by coupled electrophoretic stabilization and electrochemical inflation. Angew Chem Int Ed 50:3739–3743

    Article  CAS  Google Scholar 

  36. Shaikh F, Ugaz VM (2006) Collection, focusing, and metering of DNA in microchannels using addressable electrode arrays for portable low-power bioanalysis. Proc Natl Acad Sci U S A 103:4825–4830

    Article  CAS  Google Scholar 

  37. Sari YA, Ginardi RH, Sarno R (2013) Assessment of color levels in leaf color chart using smartphone camera with relative calibration. Inform Syst 2:4

    Google Scholar 

  38. Yetisen AK, Martinez-Hurtado J, Garcia-Melendrez A, da Cruz Vasconcellos F, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens Actuators B 196:156–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Ugaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Priye, A., Ugaz, V.M. (2017). Smartphone-Enabled Detection Strategies for Portable PCR–Based Diagnostics. In: Rasooly, A., Prickril, B. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1571. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6848-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6848-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6846-6

  • Online ISBN: 978-1-4939-6848-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics