Skip to main content

DNA-Directed Antibody Immobilization for Robust Protein Microarrays: Application to Single Particle Detection ‘DNA-Directed Antibody Immobilization

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1571))

Abstract

Protein microarrays are emerging tools which have become very powerful in multiplexed detection technologies. A variety of proteins can be immobilized on a sensor chip allowing for multiplexed diagnostics. Therefore, various types of analyte in a small volume of sample can be detected simultaneously. Protein immobilization is a crucial step for creating a robust and sensitive protein microarray-based detection system. In order to achieve a successful protein immobilization and preserve the activity of the proteins after immobilization, DNA-directed immobilization is a promising technique. Here, we present the design and the use of DNA-directed immobilized (DDI) antibodies in fabrication of robust protein microarrays. We focus on application of protein microarrays for capturing and detecting nanoparticles such as intact viruses. Experimental results on Single-particle interferometric reflectance imaging sensor (SP-IRIS) are used to validate the advantages of the DDI method.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    CAS  Google Scholar 

  2. Sun H, Chen GYJ, Yao SQ (2013) Recent advances in microarray technologies for proteomics. Chem Biol 20:685–699

    Article  CAS  Google Scholar 

  3. Hall DA, Tacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167

    Article  CAS  Google Scholar 

  4. Avci O, Lortlar ÜN, Yalcin A et al (2015) Interferometric Reflectance imaging sensor (IRIS)-a platform technology for multiplexed diagnostics and digital detection. Sensors 15(7):17649–17665

    Article  CAS  Google Scholar 

  5. Schwenk JM, Lindberg J, Sundberg M et al (2007) Determination of binding specificities in highly multiplexed bead-based antibody assays for antibody proteomics. Mol Cell Proteomics 6:125–132

    Article  CAS  Google Scholar 

  6. Cretich M, Daaboul GG, Sola L et al (2015) Digital detection of biomarkers assisted by nanoparticles: application to diagnostics. Trends Biotechnol 33(6):343–351

    Article  CAS  Google Scholar 

  7. Yurt A, Daaboul GG, Connor JH et al (2012) Single nanoparticle detectors for biological applications. Nanoscale 4(3):715–726

    Article  CAS  Google Scholar 

  8. Walt D (2013) Optical methods for single molecule detection and analysis. Anal Chem 85(3):1258–1263

    Article  CAS  Google Scholar 

  9. Daaboul GG, Lopez CA, Chinnala J et al (2014) Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and marburg detection. ACS Nano 8(6):6047–6055

    Article  CAS  Google Scholar 

  10. Monroe MR, Daaboul GG, Tuysuzoglu A et al (2013) Single nanoparticle detection for multiplexed protein diagnostics with attomolar sensitivity in serum and unprocessed whole blood. Anal Chem 85(7):3698–3706

    Article  CAS  Google Scholar 

  11. Sevenler D, Lortlar ÜN, Ünlü MS (2015) Nanoparticle biosensing with interferometric reflectance imaging. In: Vestergaard MC, Kerman K, Hsing I-M, Tamiya E (eds) Nanobiosensors and nanobioanalyses. Springer, Tokyo, pp 81–95

    Google Scholar 

  12. Monroe MR, Reddington A, Collins AD et al (2011) Multiplexed method to calibrate and quantitate fluorescence signal for allergen-specific IgE. Anal Chem 83(24):9485–9491

    Article  CAS  Google Scholar 

  13. Niemeyer CM, Boldt L, Ceyhan B et al (1999) DNA-directed immobilization: efficient, reversible, and site-selective surface binding of proteins by means of covalent DNA-streptavidin conjugates. Anal Biochem 268:54–63

    Article  CAS  Google Scholar 

  14. Ladd J, Boozer C, Yu Q et al (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20:8090–8095

    Article  CAS  Google Scholar 

  15. Schroeder H, Adler M, Gergk K et al (2009) User configurable microfluidic device for multiplexed immunoassays based on DNA-directed assembly. Anal Chem 81:1275–1279

    Article  CAS  Google Scholar 

  16. Washburn AL, Gomez J, Bailey RC (2011) DNA-encoding to improve performance and allow parallel evaluation of the binding characteristics of multiple antibodies in a surface-bound immunoassay format. Anal Chem 83:3572–3580

    Article  CAS  Google Scholar 

  17. Wacker R, Niemeyer CM (2004) DNA- μFIA-a readily configurable microarray-fluorescence immunoassay based on DNA-directed immobilization of proteins. Chem Bio Chem 5:453–459

    Article  CAS  Google Scholar 

  18. Wacker R, Schroder H, Niemeyer CM (2004) Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal Biochem 330:281–287

    Article  CAS  Google Scholar 

  19. Seymour E, Daaboul GG, Zhang X et al (2015) DNA-directed antibody immobilization for enhanced detection of single viral pathogens. Anal Chem 87(20):10505–10512

    Article  CAS  Google Scholar 

  20. Avci O, Adato R, Yalcin OA et al (2016) Physical modeling of interference enhanced imaging and characterization of single nanoparticles. Opt Express 24(6):6094–6114

    Article  Google Scholar 

  21. Pirri G, Damin F, Chiari M et al (2004) Characterization of the polymeric adsorbed coating for DNA microarray glass slides. Anal Chem 76(4):1352–1358

    Article  CAS  Google Scholar 

  22. Yalçin A, Damin F, Özkumur E et al (2009) Direct observation of conformation of a polymeric coating with implications in microarray applications. Anal Chem 81(2):625–630

    Article  Google Scholar 

  23. Romanov V, Davido SN, Miles AR et al (2014) A critical comparison of protein microarray fabrication technologies. Analyst 139(6):1303–1326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Selim Ünlü .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ünlü, N.L., Kanik, F.E., Seymour, E., Connor, J.H., Ünlü, M.S. (2017). DNA-Directed Antibody Immobilization for Robust Protein Microarrays: Application to Single Particle Detection ‘DNA-Directed Antibody Immobilization. In: Rasooly, A., Prickril, B. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1571. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6848-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6848-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6846-6

  • Online ISBN: 978-1-4939-6848-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics