Skip to main content

Chemiluminescence: A Sensitive Method for Detecting the Effects of Histamine Receptor Agonists/Antagonists on Neutrophil Oxidative Burst

  • Protocol
  • First Online:
  • 747 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Polymorphonuclear leukocytes (neutrophils) form the first line of defence in humans. After activation, they migrate through vessel walls toward the invading agent. The intruding pathogens are eliminated through the action of released proteases and by production of reactive oxygen species (ROS). Histamine, a biogenic amine with various physiological and pathological effects, is known to modulate the immune response of neutrophils, e.g., it blunts the production of ROS in neutrophils after binding to the histamine-2 receptor. To detect the ROS in neutrophils, various methods are used. Among these, luminophore-enhanced chemiluminescence is a very sensitive and easy tool for studying the effects of various compounds on ROS production in neutrophils. On the other hand, its selectivity is questionable. However, employing cell-free systems producing selective ROS types, the inhibitory effects of tested compounds against distinct ROS may be evaluated. In this chapter, we describe the methods for the evaluation of ROS modulating effects of histamine agonists/antagonists in human neutrophils by using chemiluminescence methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Leurs R, Vischer HF, Wijtmans M et al (2011) En route to new blockbuster anti-histamines: surveying the offspring of the expanding histamine receptor family. Trends Pharmacol Sci 32:250–257

    Article  CAS  PubMed  Google Scholar 

  2. Alcaniz L, Vega A, Chacon P et al (2013) Histamine production by human neutrophils. FASEB J 27:2902–2910

    Article  CAS  PubMed  Google Scholar 

  3. Huang JF, Thurmond RL (2008) The new biology of histamine receptors. Curr Allergy Asthma Rep 8:21–27

    Article  CAS  PubMed  Google Scholar 

  4. Shahid M, Walker GB, Zorn SH et al (2009) Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol 23:65–73

    Article  CAS  PubMed  Google Scholar 

  5. Bury TB, Corhay JL, Radermecker MF (1992) Histamine-induced inhibition of neutrophil chemotaxis and T-lymphocyte proliferation in man. Allergy 47:624–629

    Article  CAS  PubMed  Google Scholar 

  6. O’Reilly M, Alpert R, Jenkinson S et al (2002) Identification of a histamine H4 receptor on human eosinophils—role in eosinophil chemotaxis. J Recept Signal Transduct Res 22:431–448

    Article  PubMed  Google Scholar 

  7. Vasicek O, Lojek A, Jancinova V et al (2014) Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes. Life Sci 100:67–72

    Article  CAS  PubMed  Google Scholar 

  8. Oda T, Morikawa N, Saito Y et al (2000) Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 275:36781–36786

    Article  CAS  PubMed  Google Scholar 

  9. Morse KL, Behan J, Laz TM et al (2001) Cloning and characterization of a novel human histamine receptor. J Pharmacol Exp Ther 296:1058–1066

    CAS  PubMed  Google Scholar 

  10. Zhu Y, Michalovich D, Wu H et al (2001) Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol Pharmacol 59:434–441

    CAS  PubMed  Google Scholar 

  11. Melmon KL, Khan MM (1987) Histamine and its lymphocyte-selective derivatives as immune modulators. Trends Pharmacol Sci 8:437–441

    Article  CAS  Google Scholar 

  12. Azuma Y, Shinohara M, Wang PL et al (2001) Histamine inhibits chemotaxis, phagocytosis, superoxide anion production, and the production of TNFalpha and IL-12 by macrophages via H2-receptors. Int Immunopharmacol 1:1867–1875

    Article  CAS  PubMed  Google Scholar 

  13. Betten A, Dahlgren C, Hermodsson S et al (2003) Histamine inhibits neutrophil NADPH oxidase activity triggered by the lipoxin A4 receptor-specific peptide agonist Trp-Lys-Tyr-Met-Val-Met. Scand J Immunol 58:321–326

    Article  CAS  PubMed  Google Scholar 

  14. Lojek A, Ciz M, Pekarova M et al (2011) Modulation of metabolic activity of phagocytes by antihistamines. Interdiscip Toxicol 4:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu SC, Chu YH, Kao CH et al (2015) Steroids and antihistamines synergize to inhibit rat’s airway smooth muscle contractility. Eur Arch Otorhinolaryngol 272(6):1443–1449

    Article  PubMed  Google Scholar 

  16. Scichilone N, Ventura MT, Bonini M et al (2015) Choosing wisely: practical considerations on treatment efficacy and safety of asthma in the elderly. Clin Mol Allergy 13(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leurs R, Church MK, Taglialatela M (2002) H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin Exp Allergy 32:489–498

    Article  CAS  PubMed  Google Scholar 

  18. Church MK, Church DS (2013) Pharmacology of antihistamines. Indian J Dermatol 58:219–224

    Article  PubMed  PubMed Central  Google Scholar 

  19. Drabikova K, Nosal R, Jancinova V et al (2002) Reactive oxygen metabolite production is inhibited by histamine and H1-antagonist dithiaden in human PMN leukocytes. Free Radic Res 36:975–980

    Article  CAS  PubMed  Google Scholar 

  20. Jancinova V, Drabikova K, Nosal R et al (2006) Extra- and intracellular formation of reactive oxygen species by human neutrophils in the presence of pheniramine, chlorpheniramine and brompheniramine. Neuro Endocrinol Lett 27(Suppl 2):141–143

    CAS  PubMed  Google Scholar 

  21. Ciz M, Lojek A (2013) Modulation of neutrophil oxidative burst via histamine receptors. Br J Pharmacol 170:17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nosal R, Jancinova V, Drabikova K et al (2015) Molecular pharmacology of antihistamines in inhibition of oxidative burst of professional phagocytes. Gen Physiol Biophys 34:209–216

    Article  CAS  PubMed  Google Scholar 

  23. Drabikova K, Jancinova V, Nosal R et al (2006) Extra- and intracellular oxidant production in phorbol myristate acetate stimulated human polymorphonuclear leukocytes: modulation by histamine and H(1)-antagonist loratadine. Inflamm Res 55(Suppl 1):S19–S20

    Article  CAS  PubMed  Google Scholar 

  24. Nosal R, Drabikova K, Jancinova V et al (2006) On the pharmacology and toxicology of neutrophils. Neuro Endocrinol Lett 27(Suppl 2):148–151

    CAS  PubMed  Google Scholar 

  25. Wright HL, Moots RJ, Bucknall RC et al (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford) 49:1618–1631

    Article  CAS  Google Scholar 

  26. Kruger P, Saffarzadeh M, Weber AN et al (2015) Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog 11:e1004651

    Article  PubMed  PubMed Central  Google Scholar 

  27. Serhan CN, Brain SD, Buckley CD et al (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mocsai A, Walzog B, Lowell CA (2015) Intracellular signalling during neutrophil recruitment. Cardiovasc Res 107:373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scapini P, Lapinet-Vera JA, Gasperini S et al (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  30. Scapini P, Cassatella MA (2014) Social networking of human neutrophils within the immune system. Blood 124:710–719

    Article  CAS  PubMed  Google Scholar 

  31. Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151

    Article  CAS  PubMed  Google Scholar 

  32. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones DP (2006) Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 163:38–53

    Article  CAS  PubMed  Google Scholar 

  34. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    Article  CAS  PubMed  Google Scholar 

  35. Oktyabrsky ON, Smirnova GV (2007) Redox regulation of cellular functions. Biochemistry (Mosc) 72:132–145

    Article  CAS  Google Scholar 

  36. Filippin LI, Vercelino R, Marroni NP et al (2008) Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 152:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  38. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14

    Article  CAS  PubMed  Google Scholar 

  39. Liu L, Dahlgren C, Elwing H et al (1996) A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. J Immunol Methods 192:173–178

    Article  CAS  PubMed  Google Scholar 

  40. Allen RC (1977) Evaluation of serum opsonic capacity by quantitating the initial chemiluminescent response from phagocytizing polymorphonuclear leukocytes. Infect Immun 15:828–833

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Seymour GJ, Whyte GJ, Powell RN (1986) Chemiluminescence in the assessment of polymorphonuclear leukocyte function in chronic inflammatory periodontal disease. J Oral Pathol 15:125–131

    Article  CAS  PubMed  Google Scholar 

  42. Fromtling RA, Abruzzo GK (1985) Chemiluminescence as a tool for the evaluation of antimicrobial agents: a review. Methods Find Exp Clin Pharmacol 7:493–500

    CAS  PubMed  Google Scholar 

  43. Calokerinos AC, Deftereos NT, Baeyens WR (1995) Chemiluminescence in drug assay. J Pharm Biomed Anal 13:1063–1071

    Article  CAS  PubMed  Google Scholar 

  44. Vilim V, Wilhelm J (1989) What do we measure by a luminol-dependent chemiluminescence of phagocytes? Free Radic Biol Med 6:623–629

    Article  CAS  PubMed  Google Scholar 

  45. Dahlgren C, Stendahl O (1983) Role of myeloperoxidase in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun 39:736–741

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lundqvist H, Kricka LJ, Stott RA et al (1995) Influence of different luminols on the characteristics of the chemiluminescence reaction in human neutrophils. J Biolumin Chemilumin 10:353–359

    Article  CAS  PubMed  Google Scholar 

  47. Lundqvist H, Dahlgren C (1996) Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils. Free Radic Biol Med 20:785–792

    Article  CAS  PubMed  Google Scholar 

  48. Dahlgren C (1988) Effects on extra- and intracellularly localized, chemoattractant-induced, oxygen radical production in neutrophils following modulation of conditions for ligand-receptor interaction. Inflammation 12:335–349

    Article  CAS  PubMed  Google Scholar 

  49. Johansson A, Dahlgren C (1989) Characterization of the luminol-amplified light-generating reaction induced in human monocytes. J Leukoc Biol 45:444–451

    CAS  PubMed  Google Scholar 

  50. Kopprasch S, Pietzsch J, Graessler J (2003) Validation of different chemilumigenic substrates for detecting extracellular generation of reactive oxygen species by phagocytes and endothelial cells. Luminescence 18:268–273

    Article  CAS  PubMed  Google Scholar 

  51. Kralova J, Nosal R, Drabikova K et al (2008) Comparative investigations of the influence of H1-antihistamines on the generation of reactive oxygen species by phagocytes. Inflamm Res 57(Suppl 1):S49–S50

    Article  CAS  PubMed  Google Scholar 

  52. Kralova J, Rackova L, Pekarova M et al (2009) The effects of H1-antihistamines on the nitric oxide production by RAW 264.7 cells with respect to their lipophilicity. Int Immunopharmacol 9:990–995

    Article  CAS  PubMed  Google Scholar 

  53. Nosal R, Drabikova K, Jancinova V et al (2009) H1-antihistamines and oxidative burst of professional phagocytes. Neuro Endocrinol Lett 30(Suppl 1):133–136

    CAS  PubMed  Google Scholar 

  54. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  55. Kori S, Namiki H, Suzuki K (2009) Biphasic regulation of polymorphonuclear leukocyte spreading by polyphenolic compounds with pyrogallol moieties. Int Immunopharmacol 9:1159–1167

    Article  CAS  PubMed  Google Scholar 

  56. Dahlgren C, Karlsson A, Bylund J (2007) Measurement of respiratory burst products generated by professional phagocytes. Methods Mol Biol 412:349–363

    Article  CAS  PubMed  Google Scholar 

  57. Jancinova V, Drabikova K, Nosal R et al (2006) The combined luminol/isoluminol chemiluminescence method for differentiating between extracellular and intracellular oxidant production by neutrophils. Redox Rep 11:110–116

    Article  CAS  PubMed  Google Scholar 

  58. Kucekova Z, Humpolicek P, Kasparkova V et al (2014) Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf B Biointerfaces 116:411–417

    Article  CAS  PubMed  Google Scholar 

  59. Komrskova D, Lojek A, Hrbac J et al (2006) A comparison of chemical systems for luminometric determination of antioxidant capacity towards individual reactive oxygen species. Luminescence 21:239–244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the MEYS of the Czech Republic (LD14030), Slovak Research and Development Agency (APVV-0052-10), and the Scientific Grant Agency of the Slovak Republic (VEGA 2/0029/16). OV and TP were supported by the project no. LQ1605 from the National Program of Sustainability II (MEYS CR) and by the project FNUSA-ICRC no. CZ.1.05/1.1.00/02.0123 (OP VaVpI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Číž .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vašíček, O., Perečko, T., Jančinová, V., Pažoureková, S., Nosáľ, R., Číž, M. (2017). Chemiluminescence: A Sensitive Method for Detecting the Effects of Histamine Receptor Agonists/Antagonists on Neutrophil Oxidative Burst. In: Tiligada, E., Ennis, M. (eds) Histamine Receptors as Drug Targets. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6843-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6843-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6841-1

  • Online ISBN: 978-1-4939-6843-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics