Skip to main content

Approaches to Recombinant Histamine H3/H4 Receptor Expression in Mammalian Cells

  • Protocol
  • First Online:
Histamine Receptors as Drug Targets

Abstract

Recombinant receptor techniques are very commonly utilized in pharmacological studies nowadays. This state of affairs is a result of recent development of genetic engineering and DNA cloning methods, which made the expression of foreign genes in various cellular environments possible. The starting point for the application of recombinant proteins in studies on seven-transmembrane receptors (7TMRs) was marked by cloning of the first two 7TMRs-cholinergic and adrenergic receptors in the late 1980s. Resolving of gene sequences for successive receptors enabled the use of expression techniques for already well-characterized 7TMRs, but also for orphan receptors. Within the toolbox of available systems for expression of recombinant receptors, mammalian cells constitute the most frequently used model, since they offer a high probability for maintenance of full functional activity of artificially overexpressed receptors. Taking into consideration the importance of mammalian expression systems in relation to current challenges of molecular pharmacology, some of the available protocols for recombinant 7TMRs production in mammalian cells will be discussed in this chapter.

In the first part, details of transient transfection of CHO cells with genetic construct encoding for fusion protein of histamine H3 receptor and fluorescent protein-mCherry using polyethylenimine as transfection reagent will be given. Then, methods for establishing a monoclonal cell lines stably expressing receptor protein following the lipofection procedure will be presented. Finally, the utility of retroviral expression systems for recombinant receptor production will be discussed using the histamine H4 receptor as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill SJ (2006) G-protein-coupled receptors: past, present and future. Br J Pharmacol 147(Suppl 1):S27–S37

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bockaert J, Brand C, Journot L (1997) Do recombinant receptor assays provide affinity and potency estimates? Ann N Y Acad Sci 812:55–70

    Article  CAS  PubMed  Google Scholar 

  3. Kenakin T (1996) The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol Rev 48:413–463

    CAS  PubMed  Google Scholar 

  4. Sautel M, Milligan G (2000) Molecular manipulation of G-protein-coupled receptors: a new avenue into drug discovery. Curr Med Chem 7:889–896

    Article  CAS  PubMed  Google Scholar 

  5. Sarramegna V, Talmont F, Demange P et al (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546

    Article  CAS  PubMed  Google Scholar 

  6. Tate CG, Grisshammer R (1996) Heterologous expression of G-protein-coupled receptors. Trends Biotechnol 14:426–430

    Article  CAS  PubMed  Google Scholar 

  7. Colosimo A, Goncz KK, Holmes AR et al (2000) Transfer and expression of foreign genes in mammalian cells. Biotechniques 29:314–318 320-312, 324

    CAS  PubMed  Google Scholar 

  8. Mortensen RM, Kingston RE (2009) Selection of transfected mammalian cells. Curr Protoc Mol Biol 86:9.5.1–9.5.13

    Google Scholar 

  9. Makrides SC (1999) Components of vectors for gene transfer and expression in mammalian cells. Protein Expr Purif 17:183–202

    Article  CAS  PubMed  Google Scholar 

  10. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meissner P, Pick H, Kulangara A et al (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol Bioeng 75:197–203

    Article  CAS  PubMed  Google Scholar 

  12. Reed SE, Staley EM, Mayginnes JP et al (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138:85–98

    Article  CAS  PubMed  Google Scholar 

  13. Ehrhardt C, Schmolke M, Matzke A et al (2006) Polyethylenimine, a cost-effective transfection reagent. Signal Transduct 6:179–184

    Article  CAS  Google Scholar 

  14. Benjaminsen RV, Mattebjerg MA, Henriksen JR et al (2013) The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 21:149–157

    Article  CAS  PubMed  Google Scholar 

  15. Hawley-Nelson P, Ciccarone V, Moore ML (2008) Transfection of cultured eukaryotic cells using cationic lipid reagents. Curr Protoc Mol Biol 81:9.4.1–9.4.17

    Google Scholar 

  16. Hermans E (2004) Generation of model cell lines expressing recombinant G-protein-coupled receptors. Methods Mol Biol 259:137–153

    CAS  PubMed  Google Scholar 

  17. Freshney RI (2005) Culture of animal cells: a manual of basic technique, 5th edn. Wiley-Liss, Hoboken, NJ

    Book  Google Scholar 

  18. Baldi L, Hacker DL, Adam M et al (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    Article  CAS  PubMed  Google Scholar 

  19. Zaremba ML, Borowski J (2004) Mikrobiologia lekarska: podręcznik dla studentów medycyny, 3rd edn. Wydawnictwo Lekarskie PZWL, Warszawa

    Google Scholar 

  20. Cepko C, Pear W (2001) Overview of the retrovirus transduction system. Curr Protoc Mol Biol 36:9.9.1–9.9.16

    Google Scholar 

  21. Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6:2895–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jayapal KP, Wlaschin KF, Hu W-S et al (2007) Recombinant protein therapeutics from CHO cells—20 years and counting. Chem Eng Prog 103:40

    CAS  Google Scholar 

  23. Graham FL, Smiley J, Russell WC et al (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74

    Article  CAS  PubMed  Google Scholar 

  24. Atwood BK, Lopez J, Wager-Miller J et al (2011) Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51:187–200

    Article  CAS  PubMed  Google Scholar 

  26. Witte DG, Yao BB, Miller TR et al (2006) Detection of multiple H3 receptor affinity states utilizing [3H]A-349821, a novel, selective, non-imidazole histamine H3 receptor inverse agonist radioligand. Br J Pharmacol 148:657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markowitz D, Goff S, Bank A (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167:400–406

    Article  CAS  PubMed  Google Scholar 

  28. Hughes P, Marshall D, Reid Y et al (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43:575 577-578, 581-572

    Article  CAS  PubMed  Google Scholar 

  29. Jacobsen L, Hughes P (2007) Effects of passage number on cell line transfection. Biochemica 3:2

    Google Scholar 

  30. Emi N, Friedmann T, Yee JK (1991) Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol 65:1202–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Burns JC, Friedmann T, Driever W et al (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–8037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Polish National Science Centre within the frame of Meastro grant No. 2011/02/A/NZ4/00031 and Preludium grant No. 2011/01/N/NZ4/01126, which enabled the development and optimization of protocols described in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Kieć-Kononowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Karcz, T., Cichoń, U., Kieć-Kononowicz, K. (2017). Approaches to Recombinant Histamine H3/H4 Receptor Expression in Mammalian Cells. In: Tiligada, E., Ennis, M. (eds) Histamine Receptors as Drug Targets. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6843-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6843-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6841-1

  • Online ISBN: 978-1-4939-6843-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics