Skip to main content

Cerebrospinal Fluid Markers in Neuroinflammation: The Paradigm of Optic Neuritis

  • Protocol
  • First Online:
Histamine Receptors as Drug Targets

Abstract

The central nervous system (CNS) is a complex organ that is isolated from the periphery due to the existence of the blood-brain barrier (BBB). Recently, a large number of biomarkers have been identified, whose presence in the cerebrospinal fluid (CSF) identifies a certain pathology. There are many different types of biomarkers reflecting alterations of the immune system, of BBB disruption, of demyelination, of oxidative stress and excitotoxicity, of axonal/neuronal damage, of gliosis, of remyelination and repair, etc. Neuroinflammation is the specific adaptive response of brain tissue to mechanical damage, hypoxia, and metabolic stress. Optic neuritis, which is the inflammation of the optic nerve, is a specific neuroinflammatory condition that is strongly related to multiple sclerosis (MS) and neuromyelitis optica (NMO). Scientific evidence derived from the experimental model of autoimmune encephalitis (EAE) points out the importance of histamine in the modulation of inflammatory responses in the brain. Related to clinical findings, histamine levels are high in the CSF of patients with MS. Optic neuritis, the inflammation of the optic nerve, is characterized by simultaneous activation of both inflammatory and anti-inflammatory processes. Histamine’s effect in the brain is known to be strongly related to receptor activation. In this chapter, we propose a protocol for studying neuroinflammation and identifying an inflammatory profile in patients with optic neuritis, emphasizing mainly in the putative role of histamine in the modulation of demyelinating procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang KKW, Zhang Z, Kobeissy FH (2014) Biomarkers of brain injury and neurological disorders. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  2. Katsavos S, Anagnostouli M (2013) Biomarkers in multiple sclerosis: an up-to-date overview. Mult Scler Int 2013:340508

    PubMed  PubMed Central  Google Scholar 

  3. Piccolo L, Woodhall M, Tackley G et al (2016) Isolated new onset “atypical” optic neuritis in the NMO clinic: serum antibodies, prognoses and diagnoses at follow-up. J Neurol 263:370–379

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez-Martin E, Picon C, Costa-Frossard L et al (2015) Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol 180:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piskunov AK (2010) Neuroinflammation biomarkers. Clin Neuroc 4:55–63

    Google Scholar 

  6. Rosi S, Ramirez-Amaya V, Vazdarjanova A et al (2005) Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression. J Neurosci 25:723–731

    Article  CAS  PubMed  Google Scholar 

  7. Barger SW, Harmon AD (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388:878–881

    Article  CAS  PubMed  Google Scholar 

  8. Barger SW, Basile AS (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem 76:846–854

    Article  CAS  PubMed  Google Scholar 

  9. Akiyama H, Itagaki S, McGeer PL (1988) Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. Neurosci Res 20:147–157

    Article  CAS  Google Scholar 

  10. Streit WJ, Graeber MB, Kreutzberg GW (1989) Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 105:115–126

    Article  CAS  PubMed  Google Scholar 

  11. McGeer PL, Itagaki S, Tago H et al (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200

    Article  CAS  PubMed  Google Scholar 

  12. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415

    Article  CAS  PubMed  Google Scholar 

  14. Wood PL (2003) Neuroinflammation: mechanisms and management. Cont Neurosci, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  15. Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28:2221–2230

    Article  CAS  PubMed  Google Scholar 

  16. Suehiro E, Fujisawa H, Akimura T et al (2004) Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J Neurotrauma 21:1706–1711

    Article  PubMed  Google Scholar 

  17. Liu MC, Akle V, Zheng W et al (2006) Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 98:700–712

    Article  CAS  PubMed  Google Scholar 

  18. Kaur C, Ling EA (2008) Antioxidants and neuroprotection in the adult and developing central nervous system. Cur Med Chem 15:3068–3080

    Article  CAS  Google Scholar 

  19. Canto E, Tintore M, Villar LM et al (2014) Validation of semaphorin 7A and ala-beta-his-dipeptidase as biomarkers associated with the conversion from clinically isolated syndrome to multiple sclerosis. J Neuroinflammation 11:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nakatsuji Y (2014) Sema4A as a biomarker predicting responsiveness to IFN beta treatment. Rinsho Shinkeigaku 54:972–974

    Article  PubMed  Google Scholar 

  21. Kremer D, Hartung HP, Kury P (2015) Targeting semaphorins in MS as a treatment strategy to promote remyelination: a tale of mice, rats and men. Mult Scler 21:1616–1617

    Article  CAS  PubMed  Google Scholar 

  22. Gendelman HE (2002) Neural immunity: friend or foe? J Neurovirol 8:474–479

    Article  CAS  PubMed  Google Scholar 

  23. Cipolla MJ (2009) The cerebral circulation. integrated systems physiology: from molecule to function. San Rafael, USA

    Google Scholar 

  24. Ehrlich P (1885) Das Sauerstoff-Bedürfniss des Organismus. Eine farbenanalytische Studie. Habilitationsschrift. vol Habilitation. Universität Berlin, Berlin

    Google Scholar 

  25. Levanony H, Rubin R, Altschuler Y et al (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119:1117–1128

    Article  CAS  PubMed  Google Scholar 

  26. Sakakibara A, Furuse M, Saitou M et al (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rubin LL (1992) Endothelial cells: adhesion and tight junctions. Curr Opin Cell Biol 4:830–833

    Article  CAS  PubMed  Google Scholar 

  28. de Lange EC (2004) Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev 56:1793–1809

    Article  PubMed  CAS  Google Scholar 

  29. Begley DJ (2004) ABC transporters and the blood-brain barrier. Curr Pharm Des 10:1295–1312

    Article  CAS  PubMed  Google Scholar 

  30. Greenwood J, Amos CL, Walters CE et al (2003) Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J Immunol 171:2099–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carman CV, Springer TA (2008) Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 20:533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chavakis T, Preissner KT, Santoso S (2003) Leukocyte trans-endothelial migration: JAMs add new pieces to the puzzle. Thromb Haemost 89:13–17

    CAS  PubMed  Google Scholar 

  33. Olsson T, Sun J, Hillert J et al (1992) Increased numbers of T cells recognizing multiple myelin basic protein epitopes in multiple sclerosis. Eur J Immunol 22:1083–1107

    Article  CAS  PubMed  Google Scholar 

  34. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  35. Noseworthy JH, Lucchinetti C, Rodriguez M et al (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  CAS  PubMed  Google Scholar 

  36. Hafler DA, Slavik JM, Anderson DE et al (2005) Multiple sclerosis. Immunol Rev 204:208–231

    Article  CAS  PubMed  Google Scholar 

  37. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med 354:942–955

    Article  CAS  PubMed  Google Scholar 

  38. Morgan L, Shah B, Rivers LE et al (2007) Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neurosci 147:664–673

    Article  CAS  Google Scholar 

  39. Waubant E (2006) Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers 22:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chandler S, Miller KM, Clements JM et al (1997) Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview. J Neuroimmunol 72:155–161

    Article  CAS  PubMed  Google Scholar 

  41. Correale J, Bassani Molinas Mde L (2003) Temporal variations of adhesion molecules and matrix metalloproteinases in the course of MS. J Neuroimmunol 140:198–209

    Article  CAS  PubMed  Google Scholar 

  42. Lou J, Gasche Y, Zheng L et al (1999) Interferon-beta inhibits activated leukocyte migration through human brain microvascular endothelial cell monolayer. Lab Invest 79:1015–1025

    CAS  PubMed  Google Scholar 

  43. Cayrol R, Wosik K, Berard JL et al (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nature Immunol 9:137–145

    Article  CAS  Google Scholar 

  44. Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  CAS  PubMed  Google Scholar 

  45. Hendriks JJ, Alblas J, van der Pol SM et al (2004) Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J Exp Med 200:1667–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haghikia A, Haghikia A, Hellwig K et al (2012) Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology 79:2166–2170

    Article  CAS  PubMed  Google Scholar 

  47. Kamphuis WWDTC, Reijerkerk A, Romero IA et al (2015) The blood-brain barrier in multiple sclerosis: microRNAs as key regulators. CNS Neurol Disord Drug Targets 14:157–167

    Article  CAS  PubMed  Google Scholar 

  48. Khachaturova NK (1973) Classification of optic neuritis. Vestnik Oftalmologii 2:39–42

    CAS  PubMed  Google Scholar 

  49. Honan WP, Heron JR, Foster DH et al (1990) Visual loss in multiple sclerosis and its relation to previous optic neuritis, disease duration and clinical classification. Brain 113:975–987

    Article  PubMed  Google Scholar 

  50. Boomer JA, Siatkowski RM (2003) Optic neuritis in adults and children. Semin Ophthalmol 18:174–180

    Article  PubMed  Google Scholar 

  51. Absoud M, Cummins C, Desai N et al (2011) Childhood optic neuritis clinical features and outcome. Arch Dis Child 96:860–862

    Article  PubMed  Google Scholar 

  52. Burman J, Raininko R, Fagius J (2011) Bilateral and recurrent optic neuritis in multiple sclerosis. Acta Neurol Scand 123:207–210

    Article  CAS  PubMed  Google Scholar 

  53. Ramanathan S, Prelog K, Barnes EH et al (2016) Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 22:470–482

    Article  PubMed  Google Scholar 

  54. Zhang Y, Liang X, Wei S et al (2015) Differential diagnosis for multiple sclerosis-related optic neuritis. Eye Sci 30:23–28

    PubMed  Google Scholar 

  55. Osborne BJ, Volpe NJ (2009) Optic neuritis and risk of MS: differential diagnosis and management (in eng). Clin J Med 76:181–190

    Google Scholar 

  56. Szilasiova J, Klimova E, Vesela D (2002) Optic neuritis as the first sign of multiple sclerosis. Cesk Slov Oftalmol 58:259–264

    CAS  PubMed  Google Scholar 

  57. Galea I, Freedman MS, Thompson EJ (2011) Cerebrospinal fluid analysis in the 2010 revised McDonald’s multiple sclerosis diagnostic criteria. Ann Neurol 70:183

    Article  PubMed  Google Scholar 

  58. Wiendl H, Kieseier BC, Gold R et al (2006) Revision of McDonald’s new diagnostic criteria for multiple sclerosis. Nervenarzt 77:1235, 1237–1235, 1245

    Article  Google Scholar 

  59. Arezzo JC, Brosnan CF, Schroeder CE et al (1988) Electrophysiological analysis of factors involved in the primary demyelinating diseases: the rabbit eye model system. Brain Res 462:286–300

    Article  CAS  PubMed  Google Scholar 

  60. Petersen AA, Sellebjerg F, Frederiksen J et al (1998) Soluble ICAM-1, demyelination, and inflammation in multiple sclerosis and acute optic neuritis. J Neuroimmunol 88:120–127

    Article  CAS  PubMed  Google Scholar 

  61. Kinnunen E, Konttinen YT, Bergroth V et al (1989) Immunological studies on patients with optic neuritis without evidence of multiple sclerosis. J Neurol Sci 90:43–52

    Article  CAS  PubMed  Google Scholar 

  62. Tsakiri A, Ravanidis S, Lagoudaki R et al (2015) Neuroprotective and anti-inflammatory mechanisms are activated early in optic neuritis. Acta Neurol Scand 131:305–312

    Article  CAS  PubMed  Google Scholar 

  63. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  PubMed  Google Scholar 

  64. Soderstrom M, Link H, Sun JB et al (1993) T cells recognizing multiple peptides of myelin basic protein are found in blood and enriched in cerebrospinal fluid in optic neuritis and multiple sclerosis. Scand J Immunol 37:355–368

    Article  CAS  PubMed  Google Scholar 

  65. Navikas V, He B, Link J et al (1996) Augmented expression of tumour necrosis factor-alpha and lymphotoxin in mononuclear cells in multiple sclerosis and optic neuritis. Brain 119:213–223

    Article  PubMed  Google Scholar 

  66. Kivisakk P, Tian W, Matusevicius D et al (1998) Optic neuritis and cytokines: no relation to MRI abnormalities and oligoclonal bands. Neurol 50:217–223

    Article  CAS  Google Scholar 

  67. Roed H, Frederiksen J, Langkilde A et al (2005) Systemic T-cell activation in acute clinically isolated optic neuritis. J Neuroimmunol 162:165–172

    Article  CAS  PubMed  Google Scholar 

  68. Soderstrom M, Link H, Xu Z et al (1993) Optic neuritis and multiple sclerosis: anti-MBP and anti-MBP peptide antibody-secreting cells are accumulated in CSF. Neurol 43:1215–1222

    Article  CAS  Google Scholar 

  69. Sellebjerg F, Madsen HO, Frederiksen JL et al (1995) Acute optic neuritis: myelin basic protein and proteolipid protein antibodies, affinity, and the HLA system. Ann Neurol 38:943–950

    Article  CAS  PubMed  Google Scholar 

  70. Bettelli E, Pagany M, Weiner HL et al (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsakiri A, Tsiantoulas D, Frederiksen J et al (2010) Increased immunopotency of monocyte derived dendritic cells from patients with optic neuritis is inhibited in vitro by simvastatin. Exp Neurol 221:320–328

    Article  CAS  PubMed  Google Scholar 

  72. Birnbaum G, Cree B, Altafullah I et al (2008) Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurol 71:1390–1395

    Article  CAS  Google Scholar 

  73. Sorensen PS, Lycke J, Eralinna JP et al (2011) Simvastatin as add-on therapy to interferon beta-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol 10:691–701

    Article  CAS  PubMed  Google Scholar 

  74. Guy J, Ellis EA, Hope GM et al (1989) Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr Eye Res 8:467–477

    Article  CAS  PubMed  Google Scholar 

  75. Tabakman R, Lecht S, Sephanova S et al (2004) Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury. Prog Brain Res 146:387–401

    CAS  PubMed  Google Scholar 

  76. Vega JA, Garcia-Suarez O, Hannestad J et al (2003) Neurotrophins and the immune system. J Anat 203:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Naghashpour M, Amani R, Sarkaki A et al (2016) Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis. Iran J Bas Med Sci 19:439–448

    Google Scholar 

  78. Razavi S, Nazem G, Mardani M et al (2015) Neurotrophic factors and their effects in the treatment of multiple sclerosis. Adv Biomed Res 4:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alvarez E, Piccio L, Mikesell RJ et al (2013) CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult Scler 19:1204–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Modvig S, Degn M, Horwitz H et al (2013) Relationship between cerebrospinal fluid biomarkers for inflammation, demyelination and neurodegeneration in acute optic neuritis. PloS One 8:e77163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tourbah A, Stievenart JL, Abanou A et al (1999) Normal-appearing white matter in optic neuritis and multiple sclerosis: a comparative proton spectroscopy study. Neuroradiology 41:738–743

    Article  CAS  PubMed  Google Scholar 

  82. Horwitz H, Degn M, Modvig S et al (2012) CSF abnormalities can be predicted by VEP and MRI pathology in the examination of optic neuritis. J Neurol 259:2616–2620

    Article  PubMed  Google Scholar 

  83. Werring DJ, Bullmore ET, Toosy AT et al (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psych 68:441–449

    Article  CAS  Google Scholar 

  84. Ciccarelli O, Toosy AT, Hickman SJ et al (2005) Optic radiation changes after optic neuritis detected by tractography-based group mapping. Hum Brain Map 25:308–316

    Article  Google Scholar 

  85. Toosy AT, Hickman SJ, Miszkiel KA et al (2005) Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Ann Neurol 57:622–633

    Article  PubMed  Google Scholar 

  86. Ferreira R, Santos T, Goncalves J et al (2012) Histamine modulates microglia function. J Neuroinflammation 9:90

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu YW, Li J, Ye JH (2010) Histamine regulates activities of neurons in the ventrolateral preoptic nucleus. J Physiol 588:4103–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rosa AC, Fantozzi R (2013) The role of histamine in neurogenic inflammation. Br J Pharmacol 170:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schneider E, Leite-de-moraes M, Dy M (2010) Histamine, immune cells and autoimmunity. Adv Exp Med Biol 709:81–94

    Article  CAS  PubMed  Google Scholar 

  90. Jutel M, Klunker S, Akdis M et al (2001) Histamine upregulates Th1 and downregulates Th2 responses due to different patterns of surface histamine 1 and 2 receptor expression. Int Arch Allergy Immunol 124:190–192

    Article  CAS  PubMed  Google Scholar 

  91. Kallweit U, Aritake K, Bassetti CL et al (2013) Elevated CSF histamine levels in multiple sclerosis patients. Fluids Barriers CNS 10:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Furtado GC, Marcondes MC, Latkowski JA et al (2008) Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. J Immunol 181:4648–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Constantinescu CS, Farooqi N, O’Brien K et al (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. O’Connor RA, Prendergast CT, Sabatos CA et al (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181:3750–3754

    Article  PubMed  PubMed Central  Google Scholar 

  96. Thakker P, Leach MW, Kuang W et al (2007) IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol 178:2589–2598

    Article  CAS  PubMed  Google Scholar 

  97. Kebir H, Ifergan I, Alvarez JI et al (2009) Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 66:390–402

    Article  CAS  PubMed  Google Scholar 

  98. Hori S, Sakaguchi S (2004) Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect 6:745–751

    Article  CAS  PubMed  Google Scholar 

  99. Liu W, Putnam AL, Xu-Yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J exp Med 203:1701–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S et al (2008) IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur J Immunol 38:576–586

    Article  CAS  PubMed  Google Scholar 

  101. Feger U, Luther C, Poeschel S et al (2007) Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin Exp Immunol 147:412–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Michel L, Berthelot L, Pettre S et al (2008) Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J Clin Invest 118:3411–3419

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang X, Koldzic DN, Izikson L et al (2004) IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol 16:249–256

    Article  CAS  PubMed  Google Scholar 

  104. O’Connor RA, Malpass KH, Anderton SM (2007) The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J Immunol 179:958–966

    Article  PubMed  Google Scholar 

  105. Fletcher JM, Lonergan R, Costelloe L et al (2009) CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 183:7602–7610

    Article  CAS  PubMed  Google Scholar 

  106. Teleshova N, Pashenkov M, Huang YM et al (2002) Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid. J Neurol 249:723–729

    Article  PubMed  Google Scholar 

  107. Petzold A, Plant GT (2014) Diagnosis and classification of autoimmune optic neuropathy. Autoimmun Rev 13:539–545

    Article  CAS  PubMed  Google Scholar 

  108. Anagnostouli M, Christidi F, Zalonis I et al (2015) Clinical and cognitive implications of cerebrospinal fluid oligoclonal bands in multiple sclerosis patients. Neurol Sci 36:2053–2060

    Article  PubMed  Google Scholar 

  109. Bessinis DP, Dalla C, Daifoti ZP et al (2012) Histamine involvement in visual development and adaptation. Inv Ophthalmol Vis Sci 53:7498–7503

    Article  CAS  Google Scholar 

  110. Tiligada E, Aslanis D, Delitheos A et al (2000) Changes in histamine content following pharmacologically-induced mast cell degranulation in the rat conjunctiva. Pharmacol Res 41:667–670

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Anagnostouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Besinis, D.P., Anagnostouli, M.C. (2017). Cerebrospinal Fluid Markers in Neuroinflammation: The Paradigm of Optic Neuritis. In: Tiligada, E., Ennis, M. (eds) Histamine Receptors as Drug Targets. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6843-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6843-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6841-1

  • Online ISBN: 978-1-4939-6843-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics