Skip to main content

Methodological Approaches to Investigate the Effects of Histamine Receptor Targeting Compounds in Preclinical Models of Breast Cancer

  • Protocol
  • First Online:
Histamine Receptors as Drug Targets

Abstract

Numerous studies demonstrated the pivotal role of histamine in breast cancer development and progression. This chapter aims to describe different preclinical breast cancer models, including in vitro soft agar clonogenic assay and in vivo chemically induced breast tumors in rats, human triple negative breast cancer (TNBC) xenograft, and murine TNBC syngeneic graft in mice. All these models could be useful and complementary to assess the role of histamine receptor ligands in breast cancer, which could originate advances in novel therapeutics to treat this disease. This chapter also describes the gold standard radiometric techniques to evaluate the activity of histamine metabolizing enzymes in breast cancer specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2011). Global Health Observatory Data Repository Number of deaths (World) by cause. Available from: http://apps.who.int/gho/data/node.main.CODWORLD?lang=enaccessed 31.10.2013

  2. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  3. Sharma S, Barry M, Gallagher DJ et al (2015) An overview of triple negative breast cancer for surgical oncologists. Surg Oncol 24:276–283

    Article  PubMed  Google Scholar 

  4. Medina VA, Rivera ES (2010) Histamine receptors and cancer pharmacology. Br J Pharmacol 161:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  6. Medina VA, Coruzzi G, Martinel Lamas DJ et al (2013) Histamine in cancer. In: Stark H (ed) Histamine H4 receptor: A novel drug target in immunoregulatory and inflammatory diseases. Versita, London

    Google Scholar 

  7. Martinel Lamas DJ, Rivera ES, Medina VA (2015) Histamine H4 receptor: insights into a potential therapeutic target in breast cancer. Front Biosci (Schol Ed) 7:1–9

    Article  Google Scholar 

  8. Davio CA, Cricco GP, Martin G et al (1994) Effect of histamine on growth and differentiation of the rat mammary gland. Agents Actions Spec No:C115–7

    Google Scholar 

  9. Maslinski C, KierskaD FW et al (1993) Histamine: its metabolism and localization in mammary gland. Comp Biochem Physiol C 105:269–273

    Article  CAS  PubMed  Google Scholar 

  10. Wagner W, Ichikawa A, Tanaka S et al (2003) Mouse mammary epithelial histamine system. J Physiol Pharmacol 5:211–223

    Google Scholar 

  11. Martinel Lamas DJ, Cortina JE, Ventura C et al (2015) Enhancement of ionizing radiation response by histamine in vitro and in vivo in human breast cancer. Cancer Biol Ther 16:137–148

    Article  CAS  PubMed  Google Scholar 

  12. Sieja K, Stanosz S, von Mach-Szczypiński J et al (2005) Concentration of histamine in serum and tissues of the primary ductal breast cancer in women. Breast 14:236–241

    Article  CAS  PubMed  Google Scholar 

  13. von Mach-Szczypiński J, Stanosz S, Sieja K et al (2009) Metabolism of histamine in tissues of primary ductal breast cancer. Metabolism 58:867–870

    Article  Google Scholar 

  14. Cricco G, Davio C, Martín G et al (1994) Histamine as an autocrine growth factor in an experimental mammary carcinoma. Agents Actions 43:17–20

    Article  CAS  PubMed  Google Scholar 

  15. Davio C, Cricco G, Bergoc R et al (1995) H1 and H2 histamine receptors in experimental carcinomas with an atypical coupling to signal transducers. Biochem Pharmacol 50:91–96

    Article  CAS  PubMed  Google Scholar 

  16. Rivera E, Davio C, Cricco G et al (1993) Histamine regulation of tumour growth. Role of H1 and H2 receptors. In: Histamine in normal and cancer cell proliferation. Advances in the Bioscience, 89, 299–317. M. García-Caballero, L. Brandes and S. Hosoda. Eds. Pergamon Press, Oxford. ISBN: 0080422020 9780080422022

    Google Scholar 

  17. Rivera ES, Cricco GP, Engel NI et al (2000) Histamine as an autocrine growth factor: an unusual role for a widespread mediator. Semin Cancer Biol 10:15–23

    Article  CAS  PubMed  Google Scholar 

  18. Davio C, Cricco G, Andrade N et al (1993) H1 and H2 histamine receptors in human mammary carcinomas. Agents Actions 38:C172–C174

    Article  Google Scholar 

  19. Lemos B, Davio C, Gass H et al (1995) Histamine receptors in human mammary gland, different benign lesions and mammmary carcinomas. Inflamm Res 44:68–69

    Article  Google Scholar 

  20. Parshad R, Hazrah P, Kumar S et al (2005) Effect of preoperative short course famotidine on TILs and survival in breast cancer. Indian J Cancer 42:185–190

    CAS  PubMed  Google Scholar 

  21. Medina V, Cricco G, Nuñez M et al (2006) Histamine-mediated signaling processes in human malignant mammary cells. Cancer Biol Ther 5:1462–1471

    Article  CAS  PubMed  Google Scholar 

  22. Medina V, Croci M, Crescenti E et al (2008) The role of histamine in human mammary carcinogenesis: H3 and H4 receptors as potential therapeutic targets for breast cancer treatment. Cancer Biol Ther 7:27–35

    Article  Google Scholar 

  23. Medina VA, Brenzoni PG, Martinel Lamas DJ et al (2011) Role of histamine H4 receptor in breast cancer cell proliferation. Front Biosci (Elite Ed) 3:1042–1060

    Google Scholar 

  24. Mak IWY, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6:114–118

    PubMed  PubMed Central  Google Scholar 

  25. Fiebig HH, Maier A, Burger AM (2004) Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer 40:802–820

    Article  CAS  PubMed  Google Scholar 

  26. Russo J, Gusterson BA, Rogers AE et al (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278

    CAS  PubMed  Google Scholar 

  27. Russo J, Russo IH (2000) Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia 5(2):187–200

    Article  CAS  PubMed  Google Scholar 

  28. Hall EJ, Giaccia AJ (2012) Clinical response of normal tissues. In: Hall EJ, Giaccia AJ, Williams, Wilkins (eds) Radiobiology for radiobiologists, 7th edn. Lippincott, Philadelphia

    Google Scholar 

  29. Pavelic PZ, SlocumHK RYM et al (1980) Colony growth in soft agar of human melanoma, sarcoma, and lung carcinoma cells disaggregated by mechanical and enzymatic methods. Cancer Res 40:2160–2164

    CAS  PubMed  Google Scholar 

  30. Manni A, Wright C (1983) Assessment of mitogenesis of the hormone-responsive NMU rat mammary tumor grown in culture in soft agar, using 3H-thymidine incorporation into DNA. Breast Cancer Res Treat 3:287–292

    Article  CAS  PubMed  Google Scholar 

  31. Price JE, Polyzos A, Zhang RD et al (1990) Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50:717–721

    CAS  PubMed  Google Scholar 

  32. Russo J, Russo IH (1996) Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 39:7–20

    Article  CAS  PubMed  Google Scholar 

  33. Hamaguchi T, Matsuoka Y, Kawaguchi H et al (2004) Terminal endbuds and acini as the respective major targets for chemical and sporadic carcinogenesis in the mammary glands of human c-Ha-rasprotooncogene transgenic rats. Breast Cancer Res Treat 83:43–56

    Article  CAS  PubMed  Google Scholar 

  34. Perše M, Cerar A, Injac R et al (2009) N-methylnitrosourea induced breast cancer in rat, the histopathology of the resulting tumours and its drawbacks as a model. Pathol Oncol Res 15:115–121

    Article  PubMed  Google Scholar 

  35. Saminathan M, Rai RB, Dhama K et al l (2014) Histopathology and immunohistochemical expression of n-methyl-n-nitrosourea (NMU) induced mammary tumours in sprague-dawley rats. Asian J Anim Vet Adv 9:621–640

    Google Scholar 

  36. Chan MM, Lu X, Merchant FM et al (2005) Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer. Carcinogenesis 26:1343–1353

    Article  CAS  PubMed  Google Scholar 

  37. Gullino PM, Pettigrew HM, Grantham FH (1975) N-nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst 54:401–414

    CAS  PubMed  Google Scholar 

  38. Thompson HT, Adlakha H (1991) Dose-responsive induction of mammary gland carcinomas by the intraperitoneal injection of 1-methyl-l-nitrosourea. Cancer Res 51:3411–3415

    CAS  PubMed  Google Scholar 

  39. Rivera ES, Andrade N, Martin G et al (1994) Induction of mammary tumors in rat by intraperitoneal injection of NMU: histopathology and estral cycle influence. Cancer Lett 86:223–228

    Article  CAS  PubMed  Google Scholar 

  40. Martin G, Melito G, Rivera E et al (1996) Effect of tamoxifen on intraperitoneal N-nitroso-N-methylurea induced tumors. Cancer Lett 100:227–234

    Article  CAS  PubMed  Google Scholar 

  41. Martin G, Rivera E, Daivo C et al (1996) Receptors characterization of intraperitoneally N-nitroso-N-methylurea-induced mammary tumors in rats. Cancer Lett 101:1–8

    Article  CAS  PubMed  Google Scholar 

  42. Martin G, Davio C, Rivera E et al (1997) Hormone dependence of mammary tumors induced in rats by intraperitoneal NMU injection. Cancer Invest 15:8–17

    Article  CAS  PubMed  Google Scholar 

  43. Sporn MB, Dowsett SA, Mershon J et al (2004) Role of raloxifene in breast cancer prevention in post menopausal women: clinical evidence and potential mechanisms of action. Clin Ther 26:830–840

    Article  CAS  PubMed  Google Scholar 

  44. Tsubura A, LaiYC MH et al (2011) Animal models of N-Methyl-N-nitrosourea-induced mammary cancer and retinal degeneration with special emphasis on therapeutic trials. In Vivo 25:11–22

    CAS  PubMed  Google Scholar 

  45. Kisková T, Jendželovský R, Rentsen E et al (2014) Resveratrol enhances the chemopreventive effect of celecoxib in chemically induced breast cancer in rats. Eur J Cancer Prev 23:506–513

    Article  PubMed  Google Scholar 

  46. Yaacob NS, Yankuzo HM, Devaraj S et al (2015) Anti-tumor action, clinical biochemistry profile and phytochemical constituents of a pharmacologically active fraction of S. crispus in NMU-induced rat mammary tumour model. PLoS One. doi:10.1371/journal.pone.0126426 2015

    Google Scholar 

  47. McCormick DL, Adamowski CB, Fiks A et al (1981) Lifetime dose-response relationships for mammary tumor induction by a single administration of N-methyl-N-nitrosourea. Cancer Res 41:1690–1694

    CAS  PubMed  Google Scholar 

  48. Kelland LR (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40:827–836

    Article  CAS  PubMed  Google Scholar 

  49. Graham C, Tucker C, Creech J et al (2006) Evaluation of the antitumor efficacy, pharmacokinetics and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin Cancer Res 12:223–234

    Article  CAS  PubMed  Google Scholar 

  50. Kerbel RS (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived—but they can be improved. Cancer Biol Ther 2:S134–S139

    CAS  PubMed  Google Scholar 

  51. Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40:852–857

    Article  CAS  PubMed  Google Scholar 

  52. Badve S, Dabbs DJ, Schnitt SJ et al (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol 24:157–167

    Article  PubMed  Google Scholar 

  53. Pierce JE (1990) Xenograft models in immunodeficient animals. I. Nude mice: spontaneous and experimental metastasis models. In: S.A. Brooks and U. Schumacher© Humana Press Inc (ed) Methods in Molecular Medicine, vol 58: Metastasis Research Protocols, Totowa NJ (ed) Cell Behavior In Vitro and In Vivo Vol. 2. pp 205–213.

    Google Scholar 

  54. Davio C, Mladovan A, Lemos B et al (2002) H1 and H2 histamine receptors mediate the production of inositol phosphates but not cAMP in human breast epithelial cells. Inflamm Res 51:1–7

    Article  CAS  PubMed  Google Scholar 

  55. Martinel Lamas D, Croci M, Carabajal E et al (2013) Therapeutic potencial of histamine H4 receptor agonists in triple-negative human breast cancer experimental model. Br J Pharmacol 170:188–199

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martinel Lamas DJ, Nicoud MB, Sterle HA et al (2015) Selective cytoprotective effect of histamine on doxorubicin-induced hepatic and cardiac toxicity in animal models. Cell Death Discov 1:15059

    Article  CAS  PubMed  Google Scholar 

  57. Kmiecik T, Otocka-Kmiecik A, Górska-Ciebiada M et al (2012) T lymphocytes as a target of histamine action. Arch Med Sci 8:154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dushyanthen S, Beavis PA, Savas P et al (2015) Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med 13:202

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hegyesi L, Colombo E, Pállinger S et al (2007) Impact of systemic histamine deficiency on the crosstalk between mammary adenocarcinoma and T cells. J Pharmacol Sci 105:66–73

    Article  CAS  PubMed  Google Scholar 

  60. Dexter DL, Kowalski HM, Blazar BA et al (1978) Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38:3174–3181

    CAS  PubMed  Google Scholar 

  61. Pulaski BA, Ostrand-Rosenberg S (1998) Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res 58:1486–1493

    CAS  PubMed  Google Scholar 

  62. Lelekakis M, Moseley JM, Martin TJ et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    Article  CAS  PubMed  Google Scholar 

  63. Heppner GH, Miller FR, Shekhar PM (2000) Nontransgenic models of breast cancer. Breast Cancer Res 2:331–334

    Article  CAS  PubMed  Google Scholar 

  64. DuPre’ SA, Hunter KW Jr (2007) Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp Mol Pathol 82:12–24

    Article  PubMed  Google Scholar 

  65. Hegyesi H, Horváth B, Pállinger E et al (2005) Histamine elevates the expression of Ets-1, a protooncogen in human melanoma cell lines through H2 receptor. FEBS Lett 579:2475–2479

    Article  CAS  PubMed  Google Scholar 

  66. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909

    Article  CAS  PubMed  Google Scholar 

  67. He G, Lin J, Cai W et al (2014) Associations of polymorphisms in histidine decarboxylase, histamine N-methyltransferase and histamine receptor H3 genes with breast cancer. PLoS One 9(5):e97728

    Article  PubMed  PubMed Central  Google Scholar 

  68. Frick LR, Rapanelli M, Arcos ML et al (2011) Oral administration of fluoxetine alters the proliferation/apoptosis balance of lymphoma cells and up-regulates T cell immunity in tumor-bearing mice. Eur J Pharmacol 659:265–272

    Article  CAS  PubMed  Google Scholar 

  69. Medina MA, Urdiales JL, Rodriguez-Caso C et al (2003) Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 38:23–59

    Article  CAS  PubMed  Google Scholar 

  70. Medina MA, Correa-Fiz F, Rodriguez-Caso C et al (2005) A comprehensive view of polyamine and histamine metabolism to the light of new technologies. J Cell Mol Med 9:854–864

    Article  CAS  PubMed  Google Scholar 

  71. Levine RJ, Watts DE (1966) A sensitive and specific assay for histidine decarboxylase activity. Biochem Pharmacol 5:841–849

    Article  Google Scholar 

  72. Hakanson R, Larsson LI, Liedberg G et al (1977) Suppression of rat stomach histidine decarboxylase activity by histamine: H2-receptor-mediated feed-back. J Physiol 269:643–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Engel N, Cricco G, Davio C et al (1996) Histamine regulates the expression of histidine decarboxylase in NMU-induced tumors in rats. Inflamm Res 45(S1):S64–S65

    Article  CAS  PubMed  Google Scholar 

  74. Tran VT, Snyder SH (1981) Histidine decarboxylase. Purification from fetal rat liver, immunologic properties, and histochemical localization in brain and stomach. J Biol Chem 256:680–686

    CAS  PubMed  Google Scholar 

  75. Kuefner MA, Feurle J, Petersen J et al (2014) Influence of iodinated contrast media on the activities of histamine inactivating enzymes diamine oxidase and histamine N-methyltransferase in vitro. Allergol Immunopathol 42:324–328

    Article  CAS  Google Scholar 

  76. Cricco G, Engel N, Crocci M et al (1997) Fluoromethylhistidine inhibits tumor growth without producing depletion of endogenous histamine. Inflamm Res 46:59–60

    Article  CAS  PubMed  Google Scholar 

  77. Manni A, Wright C (1983) Effect of tamoxifen and alpha-difluoromethylornithine on clones of nitrosomethylurea-induced rat mammary tumor cells grown in soft agar culture. Cancer Res 43:1084–1086

    CAS  PubMed  Google Scholar 

  78. Kilkenny C, Browne W, Cuthill IC et al (2010) NC3Rs reporting guidelines working group. animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160:1577–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McGrath JC, Drummond GB, McLachlan EM et al (2010) Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160:1573–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Warin R, Xiao D, Arlotti JA et al (2010) Inhibition of human breast cancer xenograft growth by cruciferous vegetable constituent benzyl isothiocyanate. Mol Carcinog 49:500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kokolus KM, Capitano ML, Lee CT et al (2013) Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci U S A 110:20176–20181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Minton K (2014) Tumour-bearing mice feel the cold. Nat Rev Immunol 14:7

    Google Scholar 

  83. Spallanzani RG, Dalotto-Moreno T, Raffo Iraolagoitia XL et al (2013) Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions. Cancer Immunol Immunother 62:1781–1795

    Article  CAS  PubMed  Google Scholar 

  84. Kramer MG, Masner M, Casales E et al (2015) Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer 15:620

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nitta Y, Ohshita J, Liu H et al (2010) Expression of recombinant human histidine decarboxylase with full length and C-terminal truncated forms in yeast and bacterial cells. J Biol Macromol 10:73–82

    CAS  Google Scholar 

  86. Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1:87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanina A. Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lamas, D.J.M. et al. (2017). Methodological Approaches to Investigate the Effects of Histamine Receptor Targeting Compounds in Preclinical Models of Breast Cancer. In: Tiligada, E., Ennis, M. (eds) Histamine Receptors as Drug Targets. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6843-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6843-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6841-1

  • Online ISBN: 978-1-4939-6843-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics