Skip to main content

Histamine and the Kidney: In Vivo Animal Models

  • Protocol
  • First Online:
  • 746 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Animal models have been, and for the foreseeable future, will remain pivotal to bridge the gap between the test tube and the human condition. In particular, the use of an animal model provides the unique chance to study the onset and the progression of renal disease, approaching it simultaneously at the functional, morphological, and biochemical levels. Thereby, in vivo models offer the ideal opportunity to develop effective therapy for the optimal management of renal diseases. More specifically, the evaluation of renal functional and morphological parameters can be used to investigate the role of histamine and its receptors in renal (patho)-physiology and to validate histamine receptors as new pharmacological targets in renal diseases. Within this chapter a suitable in vivo model to study diabetic nephropathy and some of the most important parameters to monitor the functional and morphological integrity of the kidney are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Becker GJ, Hewitson TD (2013) Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant 28:2432–2438

    Article  PubMed  Google Scholar 

  2. Rak-Raszewska A, Hauser PV, Vainio S (2015) Organ in vitro culture: what have we learned about early kidney development? Stem Cells Int 2015:959807

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim S, Takayama S (2015) Organ-on-a-chip and the kidney. Kidney Res Clin Pract 34:165–169

    Article  PubMed  PubMed Central  Google Scholar 

  4. Giraud S, Favreau F, Chatauret N et al (2011) Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol 2011:532127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng M, DiPetrillo K (2009) Non-invasive blood pressure measurement in mice. Methods Mol Biol 573:45–55

    Article  PubMed  Google Scholar 

  6. Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31:159–173

    Article  CAS  PubMed  Google Scholar 

  7. Kim J, Zarjou A, Traylor AM et al (2012) In vivo regulation of the heme oxygenase-1 gene in humanized transgenic mice. Kidney Int 82:278–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hewitson TD, Ono T, Becker GJ (2009) Small animal models of kidney disease: a review. Methods Mol Biol 466:41–57

    Article  CAS  PubMed  Google Scholar 

  9. Kurts C, Panzer U, Anders HJ et al (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753

    Article  CAS  PubMed  Google Scholar 

  10. Brady HR, Singer GG (1995) Acute renal failure. Lancet 346:1533–1540

    Article  CAS  PubMed  Google Scholar 

  11. Lassnigg A, Schmidlin D, Mouhieddine M et al (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15:1597–1605

    Article  CAS  PubMed  Google Scholar 

  12. Foundation NK et al (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–266

    Google Scholar 

  13. Mann JF, Gerstein HC, Pogue J et al (2001) Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med 134:629–636

    Article  CAS  PubMed  Google Scholar 

  14. Jones CA, Francis ME, Eberhardt MS et al (2002) Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis 39:445–459

    Article  PubMed  Google Scholar 

  15. Muntner P, Coresh J, Klag MJ et al (2002) History of myocardial infarction and stroke among incident end-stage renal disease cases and population-based controls: an analysis of shared risk factors. Am J Kidney Dis 40:323–330

    Article  PubMed  Google Scholar 

  16. Hovind P, Tarnow L, Rossing P et al (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rossing P (2005) The changing epidemiology of diabetic microangiopathy in type 1 diabetes. Diabetologia 48:1439–1444

    Article  CAS  PubMed  Google Scholar 

  18. Steffes MW, Bilous RW, Sutherland DE et al (1992) Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes 41:679–684

    Article  CAS  PubMed  Google Scholar 

  19. Katz A, Caramori ML, Sisson-Ross S et al (2002) An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int 61:2058–2066

    Article  PubMed  Google Scholar 

  20. Singh AP, Junemann A, Muthuraman A et al (2012) Animal models of acute renal failure. Pharmacol Rep 64:31–44

    Article  CAS  PubMed  Google Scholar 

  21. Sanz AB, Sanchez-Nino MD, Martin-Cleary C et al (2013) Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opin Drug Discov 8:879–895

    Article  CAS  PubMed  Google Scholar 

  22. Pickering JW, Endre ZH (2014) The definition and detection of acute kidney injury. J Renal Inj Prev 3:21–25

    PubMed  Google Scholar 

  23. Pickering JW, Endre ZH (2014) Acute kidney injury urinary biomarker time-courses. PLoS One 9:e101288

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wei Q, Dong Z (2012) Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 303:F1487–F1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ucero AC, Benito-Martin A, Izquierdo MC et al (2014) Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 46:765–776

    Article  PubMed  Google Scholar 

  26. Ucero AC, Goncalves S, Benito-Martin A et al (2010) Obstructive renal injury: from fluid mechanics to molecular cell biology. Open Access J Urol 2:41–55

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Thiel G, Wilson DR, Arce ML et al (1967) Glycerol induced hemoglobinuric acute renal failure in the rat. II. The experimental model, predisposing factors, and pathophysiologic features. Nephron 4:276–297

    Article  CAS  PubMed  Google Scholar 

  28. Curry SC, Chang D, Connor D (1989) Drug- and toxin-induced rhabdomyolysis. Ann Emerg Med 18:1068–1084

    Article  CAS  PubMed  Google Scholar 

  29. Remick DG, Newcomb DE, Bolgos GL, Call DR (2000) Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13:110–116

    Article  CAS  PubMed  Google Scholar 

  30. Yang HC, Zuo Y, Fogo AB (2010) Models of chronic kidney disease. Drug Discov Today Dis Models 7:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kashtan CE (2002) Animal models of Alport syndrome. Nephrol Dial Transplant 17:1359–1362

    Article  PubMed  Google Scholar 

  32. Ortiz A, Sanchez-Nino MD, Izquierdo MC et al (2015) Translational value of animal models of kidney failure. Eur J Pharmacol 759:205–220

    Article  CAS  PubMed  Google Scholar 

  33. Diwan V, Mistry A, Gobe G et al (2013) Adenine-induced chronic kidney and cardiovascular damage in rats. J Pharmacol Toxicol Methods 68:197–207

    Article  CAS  PubMed  Google Scholar 

  34. Nguy L, Johansson ME, Grimberg E et al (2013) Rats with adenine-induced chronic renal failure develop low-renin, salt-sensitive hypertension and increased aortic stiffness. Am J Physiol Regul Integr Comp Physiol 304:R744–R752

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-Fructuoso AI, Cano M, Arroyo M et al (2002) Lead mobilization during calcium disodium ethylenediaminetetraacetate chelation therapy in treatment of chronic lead poisoning. Am J Kidney Dis 40:51–58

    Article  CAS  PubMed  Google Scholar 

  36. Taylor FB Jr, Tesh VL, DeBault L et al (1999) Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1. Am J Pathol 154:1285–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Granger JP, LaMarca BB, Cockrell K et al (2006) Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods Mol Med 122:383–392

    PubMed  Google Scholar 

  38. Li J, LaMarca B, Reckelhoff JF (2012) A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol 303:H1H8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reutens AT, Atkins RC (2011) Epidemiology of diabetic nephropathy. Contrib Nephrol 170:1–7

    Article  PubMed  Google Scholar 

  40. Ghaderian SB, Hayati F, Shayanpour S et al (2015) Diabetes and end-stage renal disease; a review article on new concepts. J Renal Inj Prev 4:28–33

    PubMed  PubMed Central  Google Scholar 

  41. Krolewski M, Eggers PW, Warram JH (1996) Magnitude of end-stage renal disease in IDDM: a 35 year follow-up study. Kidney Int 50:2041–2046

    Article  CAS  PubMed  Google Scholar 

  42. Ritz E, Orth SR (1999) Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 341:1127–1133

    Article  CAS  PubMed  Google Scholar 

  43. Schlatzer DM, Dazard JE, Dharsee M et al (2009) Urinary protein profiles in a rat model for diabetic complications. Mol Cell Proteomics 8:2145–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tay YC, Wang Y, Kairaitis L et al (2005) Can murine diabetic nephropathy be separated from superimposed acute renal failure? Kidney Int 68:391–398

    Article  PubMed  Google Scholar 

  45. Kong LL, Wu H, Cui WP et al (2013) Advances in murine models of diabetic nephropathy. J Diabetes Res 2013:797548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kurien BT, Everds NE, Scofield RH (2004) Experimental animal urine collection: a review. Lab Anim 38:333–361

    Article  CAS  PubMed  Google Scholar 

  47. Gil MC, Aguirre JA, Lemoine AP et al (1999) Influence of age on stress responses to metabolic cage housing in rats. Cell Mol Neurobiol 19:625–633

    Article  CAS  PubMed  Google Scholar 

  48. Armando I, Carranza A, Nishimura Y et al (2001) Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation Stress. Endocrinology 142:3880–3889

    Article  CAS  Google Scholar 

  49. Eriksson E, Royo F, Lyberg K et al (2004) Effect of metabolic cage housing on immunoglobulin A and corticosterone excretion in faeces and urine of young male rats. Exp Physiol 89:427–433

    Article  CAS  PubMed  Google Scholar 

  50. Armando I, Volpi S, Aguilera G et al (2007) Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress. Brain Res 1142:92–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoppe CC, Moritz KM, Fitzgerald SM et al (2009) Transient hypertension and sustained tachycardia in mice housed individually in metabolism cages. Physiol Res 58:69–75

    CAS  PubMed  Google Scholar 

  52. Beynon RJ, Hurst JL (2004) Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25:1553–1563

    Article  CAS  PubMed  Google Scholar 

  53. Breyer MD, Qi Z (2010) Better nephrology for mice—and man. Kidney Int 77:487–489

    Article  PubMed  Google Scholar 

  54. Meyer MH, Meyer RA Jr, Gray RW et al (1985) Picric acid methods greatly overestimate serum creatinine in mice: more accurate results with high-performance liquid chromatography. Anal Biochem 144:285–290

    Article  CAS  PubMed  Google Scholar 

  55. Breyer MD, Bottinger E, Brosius FC et al (2005) Mouse models of diabetic nephropathy. J Am Soc Nephrol 16:27–45

    Article  PubMed  Google Scholar 

  56. Rodrigues WF, Miguel CB, Napimoga MH et al (2014) Establishing standards for studying renal function in mice through measurements of body size-adjusted creatinine and urea levels. Biomed Res Int 2014:872827

    PubMed  PubMed Central  Google Scholar 

  57. Fioretto P, Mauer M (2007) Histopathology of diabetic nephropathy. Semin Nephrol 27:195–207

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vallon V (2011) The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 300:R1009–R1022

    Article  CAS  PubMed  Google Scholar 

  59. Harris RD, Steffes MW, Bilous RW et al (1991) Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int 40:107–114

    Article  CAS  PubMed  Google Scholar 

  60. Najafian B, Kim Y, Crosson JT et al (2003) Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol 14:908–917

    Article  PubMed  Google Scholar 

  61. Sedor JR, Abboud HE (1984) Actions and metabolism of histamine in glomeruli and tubules of the human kidney. Kidney Int 26:144–152

    Article  CAS  PubMed  Google Scholar 

  62. Abboud HE, Ou SL, Velosa JA et al (1982) Dynamics of renal histamine in normal rat kidney and in nephrosis induced by aminonucleoside of puromycin. J Clin Invest 69:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roberts IS, Brenchley PE (2000) Mast cells: the forgotten cells of renal fibrosis. J Clin Pathol 53:858–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morgan TK, Montgomery K, Mason V et al (2006) Upregulation of histidine decarboxylase expression in superficial cortical nephrons during pregnancy in mice and women. Kidney Int 70:306–314

    Article  CAS  PubMed  Google Scholar 

  65. Beaven MA, Jacobsen S, Horakova Z (1972) Modification of the enzymatic isotopic assay of histamine and its application to measurement of histamine in tissues, serum and urine. Clin Chim Acta 37:91–103

    Article  CAS  PubMed  Google Scholar 

  66. Moore TC, Thompson DP, Glassock RJ (1971) Elevation in urinary and blood histamine following clinical renal transplantation. Ann Surg 173:381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ichikawa I, Brenner BM (1979) Mechanisms of action of hisamine and histamine antagonists on the glomerular microcirculation in the rat. Circ Res 45:737–745

    Article  CAS  PubMed  Google Scholar 

  68. Janoff A (1966) Effect of an antihistamine on the increased vascular permeability induced by leucocyte lysosome fractions. Nature 212:1605–1606

    Article  CAS  PubMed  Google Scholar 

  69. Wilson CB, Gushwa LC, Peterson OW et al (1981) Glomerular immune injury in the rat: effect of antagonists of histamine activity. Kidney Int 20:628–635

    Article  CAS  PubMed  Google Scholar 

  70. Tanda S, Mori Y, Kimura T et al (2007) Histamine ameliorates anti-glomerular basement membrane antibody-induced glomerulonephritis in rats. Kidney Int 72:608–613

    Article  CAS  PubMed  Google Scholar 

  71. Gutzmer R, Diestel C, Mommert S et al (2005) Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells. J Immunol 174:5224–5232

    Article  CAS  PubMed  Google Scholar 

  72. Kurata H, Fujii T, Tsutsui H et al (2006) Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther 319:640–647

    Article  CAS  PubMed  Google Scholar 

  73. Markle RA, Hollis TM, Cosgarea AJ (1986) Renal histamine increases in the streptozotocin-diabetic rat. Exp Mol Pathol 44:21–28

    Article  CAS  PubMed  Google Scholar 

  74. Gill DS, Thompson CS, Dandona P (1990) Histamine synthesis and catabolism in various tissues in diabetic rats. Metabolism 39:815–818

    Article  CAS  PubMed  Google Scholar 

  75. Alkan M, Machavoine F, Rignault R et al (2015) Histidine decarboxylase deficiency prevents autoimmune diabetes in NOD Mice. J Diabetes Res 2015:965056

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sinclair RJ, Bell RD, Keyl MJ (1974) Effects of prostaglandin E2 (PGE2) and histamine on renal fluid dynamics. Am J Physiol 227:1062–1066

    CAS  PubMed  Google Scholar 

  77. Banks RO, Fondacaro JD, Schwaiger MM et al (1978) Renal histamine H1 and H2 receptors: characterization and functional significance. Am J Physiol 235:F570–F575

    CAS  PubMed  Google Scholar 

  78. Schwertschlag U, Hackenthal E (1982) Histamine stimulates renin release from the isolated perfused rat kidney. Naunyn Schmiedebergs Arch Pharmacol 319:239–242

    Article  CAS  PubMed  Google Scholar 

  79. Veglia E, Grange C, Pini A et al (2015) Histamine receptor expression in human renal tubules: a comparative pharmacological evaluation. Inflamm Res 64:261–270

    Article  CAS  PubMed  Google Scholar 

  80. Rosa AC, Grange C, Pini A et al (2013) Overexpression of histamine H(4) receptors in the kidney of diabetic rat. Inflamm Res 62:357–365

    Article  CAS  PubMed  Google Scholar 

  81. Pini A, Chazot PL, Veglia E et al (2015) H3 receptor renal expression in normal and diabetic rats. Inflamm Res 64:271–273

    Article  CAS  PubMed  Google Scholar 

  82. Dunn SR, Qi Z, Bottinger EP et al (2004) Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney Int 65:1959–1967

    Article  CAS  PubMed  Google Scholar 

  83. Ganda OP, Rossini AA, Like AA (1976) Studies on streptozotocin diabetes. Diabetes 25:595–603

    Article  CAS  PubMed  Google Scholar 

  84. Rossini AA, Williams RM, Appel MC et al (1978) Complete protection from low-dose streptozotocin-induced diabetes in mice. Nature 276:182–184

    Article  CAS  PubMed  Google Scholar 

  85. George M, Ayuso E, Casellas A et al (2002) Beta cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 109:1153–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Heidbreder CA, Weiss IC, Domeney AM et al (2000) Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100:749–768

    Article  CAS  PubMed  Google Scholar 

  87. Greco AM, Gambardella P, Sticchi R et al (1989) Effects of individual housing on circadian rhythms of adult rats. Physiol Behav 45:363–366

    Article  CAS  PubMed  Google Scholar 

  88. Nagy TR, Krzywanski D, Li J, Meleth S et al (2002) Effect of group vs. single housing on phenotypic variance in C57BL/6J mice. Obes Res 10:412–415

    Article  PubMed  Google Scholar 

  89. Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1:87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin H (2011) Laboratory measurement of urine albumin and urine total protein in screening for proteinuria in chronic kidney disease. Clin Biochem Rev 32:97–102

    PubMed  PubMed Central  Google Scholar 

  91. Rodrigues GR, Lewis DR (2014) Establishing auditory steady-state response thresholds to narrow band CE-chirps((R)) in full-term neonates. Int J Pediatr Otorhinolaryngol 78:238–243

    Article  PubMed  Google Scholar 

  92. Brosius FC 3rd, Alpers CE, Bottinger EP et al (2009) Mouse models of diabetic nephropathy. J Am Soc Nephrol 20:2503–2512

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hopwood D (1996) Fixation and fixatives In: Bancroft J, Stevens A (eds) Theory and practice of histological techniques. Churchill Livingstone, New York

    Google Scholar 

  94. Andrews PM, Coffey AK (1984) A technique to reduce fixation artifacts to kidney proximal tubules. Kidney Int 25:964–968

    Article  CAS  PubMed  Google Scholar 

  95. Winsor L (1994) Tissue processing. In: Woods AE, Ellis RC (eds) Laboratory histopathology: a complete reference, vol 1. Churchill Livingstone, New York

    Google Scholar 

  96. Holdsworth SR, Summers SA (2008) Role of mast cells in progressive renal diseases. J Am Soc Nephrol 19:2254–2261

    Article  CAS  PubMed  Google Scholar 

  97. Strobel S, Miller HR, Ferguson A (1981) Human intestinal mucosal mast cells: evaluation of fixation and staining techniques. J Clin Pathol 34(8):851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vogel B, Siebert H, Hofmann U et al (2015) Determination of collagen content within picrosirius red stained paraffin-embedded tissue sections using fluorescence microscopy. MethodsX 2:124–134

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lattouf R, Younes R, Lutomski D et al (2014) Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem 62(10):751–758

    Article  PubMed  CAS  Google Scholar 

  100. Grimm PC, Nickerson P, Gough J et al (2003) Computerized image analysis of Sirius Red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J Am Soc Nephrol 14:1662–1668

    Article  PubMed  Google Scholar 

  101. Nielsen LF, Moe D, Kirkeby S et al (1998) Sirius red and acid fuchsin staining mechanisms. Biotech Histochem 73:71–77

    Article  CAS  PubMed  Google Scholar 

  102. Street JM, Souza AC, Alvarez-Prats A et al (2014) Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy. Physiol Rep 2:pii: e12088

    Article  Google Scholar 

  103. Alsaad KO, Herzenberg AM (2007) Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol 60:18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Spargo BH (1975) Practical use of electron microscopy for the diagnosis of glomerular disease. Hum Pathol 6:405–420

    Article  CAS  PubMed  Google Scholar 

  105. Tighe JR, Jones NF (1970) The diagnostic value of routine electron microscopy of renal biopsies. Proc R Soc Med 63:475–477

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Drummond K, Mauer M, International Diabetic Nephropathy Study G (2002) The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 51:1580–1587

    Article  Google Scholar 

  107. Steffes MW, Schmidt D, McCrery R et al (2001) Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int 59:2104–2113

    Article  CAS  PubMed  Google Scholar 

  108. Dalla Vestra M, Masiero A, Roiter AM et al (2003) Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 52:1031–1035

    Article  CAS  PubMed  Google Scholar 

  109. Heijboer AC, Donga E, Voshol PJ et al (2005) Sixteen hours of fasting differentially affects hepatic and muscle insulin sensitivity in mice. J Lipid Res 46:582–588

    Article  CAS  PubMed  Google Scholar 

  110. Ayala JE, Bracy DP, McGuinness OP et al (2006) Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 55:390–397

    Article  CAS  PubMed  Google Scholar 

  111. Ren JM, Marshall BA, Mueckler MM et al (1995) Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest 95:429–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Halseth AE, Bracy DP, Wasserman DH (1999) Overexpression of hexokinase II increases insulinand exercise-stimulated muscle glucose uptake in vivo. Am J Physiol 276:E70–E77

    CAS  PubMed  Google Scholar 

  113. Ayala JE, Samuel VT, Morton GJ et al (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3:525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schachtel BP (1983) Effect of an antihistamine-decongestant on otitis media. J Pediatr 102:319–321

    Article  Google Scholar 

  115. Brinkman JW, de Zeeuw D, Duker JJ et al (2005) Falsely low urinary albumin concentrations after prolonged frozen storage of urine samples. Clin Chem 51:2181–2183

    Article  CAS  PubMed  Google Scholar 

  116. Brinkman JW, de Zeeuw D, Lambers Heerspink HJ et al (2007) Apparent loss of urinary albumin during long-term frozen storage: HPLC vs immunonephelometry. Clin Chem 53:1520–1526

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pini, A., Veglia, E., Rosa, A.C. (2017). Histamine and the Kidney: In Vivo Animal Models. In: Tiligada, E., Ennis, M. (eds) Histamine Receptors as Drug Targets. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6843-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6843-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6841-1

  • Online ISBN: 978-1-4939-6843-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics